On the conditions for valid objective functions in blind separation of independent and dependent sources
- Autores
- Caiafa, Cesar Federico
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by identifying local extrema of certain objective functions (contrasts), like negentropy, Non-Gaussianity measures, kurtosis, etc. It was also suggested in [1], and verified in practice in [2,4], that some of these measures remain useful for particular cases with dependent sources, but not much work has been done in this respect and a rigorous theoretical ground still lacks. In this paper, it is shown that, if a specific type of pairwise dependence among sources exists, called Linear Conditional Expectation (LCE) law, then a family of objective functions are valid for their separation. Interestingly, this particular type of dependence arises in modeling material abundances in the spectral unmixing problem of remote sensed images. In this work, a theoretical novel approach is used to analyze Shannon entropy (SE), Non-Gaussianity (NG) measure and absolute moments of arbitrarily order, i.e. Generic Absolute (GA) moments for the separation of sources allowing them to be dependent. We provide theoretical results that show the conditions under which sources are isolated by searching for a maximum or a minimum. Also, simple and efficient algorithms based on Parzen windows estimations of probability density functions (pdfs) and Newton-Raphson iterations are proposed for the separation of dependent or independent sources. A set of simulation results on synthetic data and an application to the blind spectral unmixing problem are provided in order to validate our theoretical results and compare these algorithms against FastICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis algorithm (BCA). It is shown that, for dependent sources verifying the LCE law, the NG measure provides the best separation results.
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina - Materia
-
Dependent Component Analysis (Dca)
Independent Component Analysis (Ica)
Blind Source Separation (Bss)
Generic Absolute (Ga) Moments - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5840
Ver los metadatos del registro completo
id |
CONICETDig_946105ee4f967546630953fb5e42b8b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5840 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the conditions for valid objective functions in blind separation of independent and dependent sourcesCaiafa, Cesar FedericoDependent Component Analysis (Dca)Independent Component Analysis (Ica)Blind Source Separation (Bss)Generic Absolute (Ga) Momentshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by identifying local extrema of certain objective functions (contrasts), like negentropy, Non-Gaussianity measures, kurtosis, etc. It was also suggested in [1], and verified in practice in [2,4], that some of these measures remain useful for particular cases with dependent sources, but not much work has been done in this respect and a rigorous theoretical ground still lacks. In this paper, it is shown that, if a specific type of pairwise dependence among sources exists, called Linear Conditional Expectation (LCE) law, then a family of objective functions are valid for their separation. Interestingly, this particular type of dependence arises in modeling material abundances in the spectral unmixing problem of remote sensed images. In this work, a theoretical novel approach is used to analyze Shannon entropy (SE), Non-Gaussianity (NG) measure and absolute moments of arbitrarily order, i.e. Generic Absolute (GA) moments for the separation of sources allowing them to be dependent. We provide theoretical results that show the conditions under which sources are isolated by searching for a maximum or a minimum. Also, simple and efficient algorithms based on Parzen windows estimations of probability density functions (pdfs) and Newton-Raphson iterations are proposed for the separation of dependent or independent sources. A set of simulation results on synthetic data and an application to the blind spectral unmixing problem are provided in order to validate our theoretical results and compare these algorithms against FastICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis algorithm (BCA). It is shown that, for dependent sources verifying the LCE law, the NG measure provides the best separation results.Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaSpringer2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5840Caiafa, Cesar Federico; On the conditions for valid objective functions in blind separation of independent and dependent sources; Springer; Eurasip Journal on Advances in Signal Processing; 2012; 10-2012; 255-2841687-6180enginfo:eu-repo/semantics/altIdentifier/doi/10.1186/1687-6180-2012-255info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1186/1687-6180-2012-255info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:41Zoai:ri.conicet.gov.ar:11336/5840instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:41.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
title |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
spellingShingle |
On the conditions for valid objective functions in blind separation of independent and dependent sources Caiafa, Cesar Federico Dependent Component Analysis (Dca) Independent Component Analysis (Ica) Blind Source Separation (Bss) Generic Absolute (Ga) Moments |
title_short |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
title_full |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
title_fullStr |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
title_full_unstemmed |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
title_sort |
On the conditions for valid objective functions in blind separation of independent and dependent sources |
dc.creator.none.fl_str_mv |
Caiafa, Cesar Federico |
author |
Caiafa, Cesar Federico |
author_facet |
Caiafa, Cesar Federico |
author_role |
author |
dc.subject.none.fl_str_mv |
Dependent Component Analysis (Dca) Independent Component Analysis (Ica) Blind Source Separation (Bss) Generic Absolute (Ga) Moments |
topic |
Dependent Component Analysis (Dca) Independent Component Analysis (Ica) Blind Source Separation (Bss) Generic Absolute (Ga) Moments |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by identifying local extrema of certain objective functions (contrasts), like negentropy, Non-Gaussianity measures, kurtosis, etc. It was also suggested in [1], and verified in practice in [2,4], that some of these measures remain useful for particular cases with dependent sources, but not much work has been done in this respect and a rigorous theoretical ground still lacks. In this paper, it is shown that, if a specific type of pairwise dependence among sources exists, called Linear Conditional Expectation (LCE) law, then a family of objective functions are valid for their separation. Interestingly, this particular type of dependence arises in modeling material abundances in the spectral unmixing problem of remote sensed images. In this work, a theoretical novel approach is used to analyze Shannon entropy (SE), Non-Gaussianity (NG) measure and absolute moments of arbitrarily order, i.e. Generic Absolute (GA) moments for the separation of sources allowing them to be dependent. We provide theoretical results that show the conditions under which sources are isolated by searching for a maximum or a minimum. Also, simple and efficient algorithms based on Parzen windows estimations of probability density functions (pdfs) and Newton-Raphson iterations are proposed for the separation of dependent or independent sources. A set of simulation results on synthetic data and an application to the blind spectral unmixing problem are provided in order to validate our theoretical results and compare these algorithms against FastICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis algorithm (BCA). It is shown that, for dependent sources verifying the LCE law, the NG measure provides the best separation results. Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina |
description |
It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by identifying local extrema of certain objective functions (contrasts), like negentropy, Non-Gaussianity measures, kurtosis, etc. It was also suggested in [1], and verified in practice in [2,4], that some of these measures remain useful for particular cases with dependent sources, but not much work has been done in this respect and a rigorous theoretical ground still lacks. In this paper, it is shown that, if a specific type of pairwise dependence among sources exists, called Linear Conditional Expectation (LCE) law, then a family of objective functions are valid for their separation. Interestingly, this particular type of dependence arises in modeling material abundances in the spectral unmixing problem of remote sensed images. In this work, a theoretical novel approach is used to analyze Shannon entropy (SE), Non-Gaussianity (NG) measure and absolute moments of arbitrarily order, i.e. Generic Absolute (GA) moments for the separation of sources allowing them to be dependent. We provide theoretical results that show the conditions under which sources are isolated by searching for a maximum or a minimum. Also, simple and efficient algorithms based on Parzen windows estimations of probability density functions (pdfs) and Newton-Raphson iterations are proposed for the separation of dependent or independent sources. A set of simulation results on synthetic data and an application to the blind spectral unmixing problem are provided in order to validate our theoretical results and compare these algorithms against FastICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis algorithm (BCA). It is shown that, for dependent sources verifying the LCE law, the NG measure provides the best separation results. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5840 Caiafa, Cesar Federico; On the conditions for valid objective functions in blind separation of independent and dependent sources; Springer; Eurasip Journal on Advances in Signal Processing; 2012; 10-2012; 255-284 1687-6180 |
url |
http://hdl.handle.net/11336/5840 |
identifier_str_mv |
Caiafa, Cesar Federico; On the conditions for valid objective functions in blind separation of independent and dependent sources; Springer; Eurasip Journal on Advances in Signal Processing; 2012; 10-2012; 255-284 1687-6180 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/1687-6180-2012-255 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1186/1687-6180-2012-255 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083534465269760 |
score |
13.22299 |