Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics
- Autores
- Micheletto, Matías Javier; Santos, Rodrigo Martin; Orozco, Javier Dario
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present meta-heuristics to solve the energy aware reward based scheduling of real-time tasks with mandatory and optional parts in homogeneous multi-core processors. The problem is NP-Hard. An objective function to maximize the performance of the system considering the execution of optional parts, the benefits of slowing down the processor and a penalty for changing the operation power-mode is introduced together with a set of constraints that guarantee the real-time performance of the system. The meta-heuristics are the bio-inspired methods Particle Swarm Optimization and Genetic Algorithm. Experiments are made to evaluate the proposed algorithms using a set of synthetic systems of tasks. As these have been used previously with an Integer Lineal Programming approach, the results are compared and show that the solutions obtained with bio-inspired methods are within the Pareto frontier and obtained in less time. Finally, precedence related tasks systems are analyzed and the meta-heuristics proposed are extended to solve also this kind of systems. The evaluation is made by solving a traditional example of the real-time precedence related tasks systems on multiprocessors. The solutions obtained through the methods proposed in this paper are good and show that the methods are competitive. In all cases, the solutions are similar to the ones provided by other methods but obtained in less time and with fewer iterations.
Fil: Micheletto, Matías Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Orozco, Javier Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina - Materia
-
ENERGY HANDLING
MULTICORE SYSTEMS
REWARD BASED SCHEDULING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117620
Ver los metadatos del registro completo
id |
CONICETDig_d50307a1aa3ba6a5ad6619abfa64af20 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117620 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-HeuristicsMicheletto, Matías JavierSantos, Rodrigo MartinOrozco, Javier DarioENERGY HANDLINGMULTICORE SYSTEMSREWARD BASED SCHEDULINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we present meta-heuristics to solve the energy aware reward based scheduling of real-time tasks with mandatory and optional parts in homogeneous multi-core processors. The problem is NP-Hard. An objective function to maximize the performance of the system considering the execution of optional parts, the benefits of slowing down the processor and a penalty for changing the operation power-mode is introduced together with a set of constraints that guarantee the real-time performance of the system. The meta-heuristics are the bio-inspired methods Particle Swarm Optimization and Genetic Algorithm. Experiments are made to evaluate the proposed algorithms using a set of synthetic systems of tasks. As these have been used previously with an Integer Lineal Programming approach, the results are compared and show that the solutions obtained with bio-inspired methods are within the Pareto frontier and obtained in less time. Finally, precedence related tasks systems are analyzed and the meta-heuristics proposed are extended to solve also this kind of systems. The evaluation is made by solving a traditional example of the real-time precedence related tasks systems on multiprocessors. The solutions obtained through the methods proposed in this paper are good and show that the methods are competitive. In all cases, the solutions are similar to the ones provided by other methods but obtained in less time and with fewer iterations.Fil: Micheletto, Matías Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Orozco, Javier Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaGraz University of Technology2019-05-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117620Micheletto, Matías Javier; Santos, Rodrigo Martin; Orozco, Javier Dario; Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics; Graz University of Technology; Journal of Universal Computer Science; 25; 4; 28-5-2019; 390-4170948-695X0948-6968CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.jucs.org/jucs_25_4/scheduling_mandatory_optional_realinfo:eu-repo/semantics/altIdentifier/doi/10.3217/jucs-025-04-0390info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:40Zoai:ri.conicet.gov.ar:11336/117620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:41.122CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
title |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
spellingShingle |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics Micheletto, Matías Javier ENERGY HANDLING MULTICORE SYSTEMS REWARD BASED SCHEDULING |
title_short |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
title_full |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
title_fullStr |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
title_full_unstemmed |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
title_sort |
Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics |
dc.creator.none.fl_str_mv |
Micheletto, Matías Javier Santos, Rodrigo Martin Orozco, Javier Dario |
author |
Micheletto, Matías Javier |
author_facet |
Micheletto, Matías Javier Santos, Rodrigo Martin Orozco, Javier Dario |
author_role |
author |
author2 |
Santos, Rodrigo Martin Orozco, Javier Dario |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ENERGY HANDLING MULTICORE SYSTEMS REWARD BASED SCHEDULING |
topic |
ENERGY HANDLING MULTICORE SYSTEMS REWARD BASED SCHEDULING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper we present meta-heuristics to solve the energy aware reward based scheduling of real-time tasks with mandatory and optional parts in homogeneous multi-core processors. The problem is NP-Hard. An objective function to maximize the performance of the system considering the execution of optional parts, the benefits of slowing down the processor and a penalty for changing the operation power-mode is introduced together with a set of constraints that guarantee the real-time performance of the system. The meta-heuristics are the bio-inspired methods Particle Swarm Optimization and Genetic Algorithm. Experiments are made to evaluate the proposed algorithms using a set of synthetic systems of tasks. As these have been used previously with an Integer Lineal Programming approach, the results are compared and show that the solutions obtained with bio-inspired methods are within the Pareto frontier and obtained in less time. Finally, precedence related tasks systems are analyzed and the meta-heuristics proposed are extended to solve also this kind of systems. The evaluation is made by solving a traditional example of the real-time precedence related tasks systems on multiprocessors. The solutions obtained through the methods proposed in this paper are good and show that the methods are competitive. In all cases, the solutions are similar to the ones provided by other methods but obtained in less time and with fewer iterations. Fil: Micheletto, Matías Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Orozco, Javier Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina |
description |
In this paper we present meta-heuristics to solve the energy aware reward based scheduling of real-time tasks with mandatory and optional parts in homogeneous multi-core processors. The problem is NP-Hard. An objective function to maximize the performance of the system considering the execution of optional parts, the benefits of slowing down the processor and a penalty for changing the operation power-mode is introduced together with a set of constraints that guarantee the real-time performance of the system. The meta-heuristics are the bio-inspired methods Particle Swarm Optimization and Genetic Algorithm. Experiments are made to evaluate the proposed algorithms using a set of synthetic systems of tasks. As these have been used previously with an Integer Lineal Programming approach, the results are compared and show that the solutions obtained with bio-inspired methods are within the Pareto frontier and obtained in less time. Finally, precedence related tasks systems are analyzed and the meta-heuristics proposed are extended to solve also this kind of systems. The evaluation is made by solving a traditional example of the real-time precedence related tasks systems on multiprocessors. The solutions obtained through the methods proposed in this paper are good and show that the methods are competitive. In all cases, the solutions are similar to the ones provided by other methods but obtained in less time and with fewer iterations. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117620 Micheletto, Matías Javier; Santos, Rodrigo Martin; Orozco, Javier Dario; Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics; Graz University of Technology; Journal of Universal Computer Science; 25; 4; 28-5-2019; 390-417 0948-695X 0948-6968 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117620 |
identifier_str_mv |
Micheletto, Matías Javier; Santos, Rodrigo Martin; Orozco, Javier Dario; Scheduling Mandatory-Optional Real-Time Tasks in Homogeneous Multi-Core Systems with Energy Constraints Using Bio-Inspired Meta-Heuristics; Graz University of Technology; Journal of Universal Computer Science; 25; 4; 28-5-2019; 390-417 0948-695X 0948-6968 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.jucs.org/jucs_25_4/scheduling_mandatory_optional_real info:eu-repo/semantics/altIdentifier/doi/10.3217/jucs-025-04-0390 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Graz University of Technology |
publisher.none.fl_str_mv |
Graz University of Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269175735648256 |
score |
13.13397 |