Computational method for segmentation and classification of ingestive sounds in sheep
- Autores
- Milone, Diego Humberto; Rufiner, Hugo Leonardo; Galli, Julio Ricardo; Laca, E.A.; Cangiano, Carlos Alberto
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose a novel method to analyze and recognize automatically sound signals of chewing and biting. For the automatic segmentation and classification of acoustical ingestive behaviour of sheep the method use an appropriate acoustic representation and statistical modelling based on hidden Markov models. We analyzed 1813 seconds of chewing data from four sheep eating two different forages typically found in grazing production systems, orchardgrass and alfalfa, each at two sward heights. Because identification of species consumed when in mixed swards is a key issue in grazing science, we tested the possibility to discriminate species and sward height by using the proposed approach. Signals were correctly classified by forage and sward height in 67% of the cases, whereas forage was correctly identified 84% of the time. The results showed an overall performance of 82% for the recognition of chewing events.
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Galli, Julio Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
Fil: Laca, E.A.. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Cangiano, Carlos Alberto. University of California; Estados Unidos - Materia
-
ACOUSTIC MODELING
HIDDEN MARKOV MODELS
GRAZING SHEEP
INGESTIVE 15 BEHAVIOUR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97578
Ver los metadatos del registro completo
id |
CONICETDig_d3d4f2973fa09f33d7b79a6113c86cf6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97578 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computational method for segmentation and classification of ingestive sounds in sheepMilone, Diego HumbertoRufiner, Hugo LeonardoGalli, Julio RicardoLaca, E.A.Cangiano, Carlos AlbertoACOUSTIC MODELINGHIDDEN MARKOV MODELSGRAZING SHEEPINGESTIVE 15 BEHAVIOURhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we propose a novel method to analyze and recognize automatically sound signals of chewing and biting. For the automatic segmentation and classification of acoustical ingestive behaviour of sheep the method use an appropriate acoustic representation and statistical modelling based on hidden Markov models. We analyzed 1813 seconds of chewing data from four sheep eating two different forages typically found in grazing production systems, orchardgrass and alfalfa, each at two sward heights. Because identification of species consumed when in mixed swards is a key issue in grazing science, we tested the possibility to discriminate species and sward height by using the proposed approach. Signals were correctly classified by forage and sward height in 67% of the cases, whereas forage was correctly identified 84% of the time. The results showed an overall performance of 82% for the recognition of chewing events.Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Galli, Julio Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; ArgentinaFil: Laca, E.A.. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaFil: Cangiano, Carlos Alberto. University of California; Estados UnidosElsevier2009-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97578Milone, Diego Humberto; Rufiner, Hugo Leonardo; Galli, Julio Ricardo; Laca, E.A.; Cangiano, Carlos Alberto; Computational method for segmentation and classification of ingestive sounds in sheep; Elsevier; Computers and Eletronics in Agriculture; 65; 2; 3-2009; 228-2370168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169908002214info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2008.10.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:37Zoai:ri.conicet.gov.ar:11336/97578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:38.105CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computational method for segmentation and classification of ingestive sounds in sheep |
title |
Computational method for segmentation and classification of ingestive sounds in sheep |
spellingShingle |
Computational method for segmentation and classification of ingestive sounds in sheep Milone, Diego Humberto ACOUSTIC MODELING HIDDEN MARKOV MODELS GRAZING SHEEP INGESTIVE 15 BEHAVIOUR |
title_short |
Computational method for segmentation and classification of ingestive sounds in sheep |
title_full |
Computational method for segmentation and classification of ingestive sounds in sheep |
title_fullStr |
Computational method for segmentation and classification of ingestive sounds in sheep |
title_full_unstemmed |
Computational method for segmentation and classification of ingestive sounds in sheep |
title_sort |
Computational method for segmentation and classification of ingestive sounds in sheep |
dc.creator.none.fl_str_mv |
Milone, Diego Humberto Rufiner, Hugo Leonardo Galli, Julio Ricardo Laca, E.A. Cangiano, Carlos Alberto |
author |
Milone, Diego Humberto |
author_facet |
Milone, Diego Humberto Rufiner, Hugo Leonardo Galli, Julio Ricardo Laca, E.A. Cangiano, Carlos Alberto |
author_role |
author |
author2 |
Rufiner, Hugo Leonardo Galli, Julio Ricardo Laca, E.A. Cangiano, Carlos Alberto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ACOUSTIC MODELING HIDDEN MARKOV MODELS GRAZING SHEEP INGESTIVE 15 BEHAVIOUR |
topic |
ACOUSTIC MODELING HIDDEN MARKOV MODELS GRAZING SHEEP INGESTIVE 15 BEHAVIOUR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we propose a novel method to analyze and recognize automatically sound signals of chewing and biting. For the automatic segmentation and classification of acoustical ingestive behaviour of sheep the method use an appropriate acoustic representation and statistical modelling based on hidden Markov models. We analyzed 1813 seconds of chewing data from four sheep eating two different forages typically found in grazing production systems, orchardgrass and alfalfa, each at two sward heights. Because identification of species consumed when in mixed swards is a key issue in grazing science, we tested the possibility to discriminate species and sward height by using the proposed approach. Signals were correctly classified by forage and sward height in 67% of the cases, whereas forage was correctly identified 84% of the time. The results showed an overall performance of 82% for the recognition of chewing events. Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina Fil: Galli, Julio Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina Fil: Laca, E.A.. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina Fil: Cangiano, Carlos Alberto. University of California; Estados Unidos |
description |
In this work we propose a novel method to analyze and recognize automatically sound signals of chewing and biting. For the automatic segmentation and classification of acoustical ingestive behaviour of sheep the method use an appropriate acoustic representation and statistical modelling based on hidden Markov models. We analyzed 1813 seconds of chewing data from four sheep eating two different forages typically found in grazing production systems, orchardgrass and alfalfa, each at two sward heights. Because identification of species consumed when in mixed swards is a key issue in grazing science, we tested the possibility to discriminate species and sward height by using the proposed approach. Signals were correctly classified by forage and sward height in 67% of the cases, whereas forage was correctly identified 84% of the time. The results showed an overall performance of 82% for the recognition of chewing events. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97578 Milone, Diego Humberto; Rufiner, Hugo Leonardo; Galli, Julio Ricardo; Laca, E.A.; Cangiano, Carlos Alberto; Computational method for segmentation and classification of ingestive sounds in sheep; Elsevier; Computers and Eletronics in Agriculture; 65; 2; 3-2009; 228-237 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97578 |
identifier_str_mv |
Milone, Diego Humberto; Rufiner, Hugo Leonardo; Galli, Julio Ricardo; Laca, E.A.; Cangiano, Carlos Alberto; Computational method for segmentation and classification of ingestive sounds in sheep; Elsevier; Computers and Eletronics in Agriculture; 65; 2; 3-2009; 228-237 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169908002214 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2008.10.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269591780196352 |
score |
13.13397 |