Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis
- Autores
- Caceres, Jorge; Moncayo, Samuel; Rosales, Juan D.; de Villena, Francisco Javier Manuel; Alvira, Fernando Carlos; Bilmes, Gabriel M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The adulteration and traceability of olive oils are serious problems in the olive oil industry. In this work, a method based on laser-induced breakdown spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to the identification, quality control, traceability, and adulteration detection of extra virgin olive oils. Instant identification of the samples is achieved using a spectral library, which was obtained by analysis of representative samples using a single laser pulse and treatment by NNs. The samples used in this study belong to four countries. The study also included different regions of each country. The results obtained allow the identification of the oils tested with a certainty of more than 95%. Single-shot measurements were enough for clear identification of the samples. The method can be developed for automatic real-time, fast, reliable, and robust measurements, and the system can be packed into portable form for non-specialist users.
Fil: Caceres, Jorge. Universidad Complutense de Madrid; España
Fil: Moncayo, Samuel. Universidad Complutense de Madrid; España
Fil: Rosales, Juan D.. Universidad Complutense de Madrid; España
Fil: de Villena, Francisco Javier Manuel. Universidad Complutense de Madrid; España
Fil: Alvira, Fernando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Bilmes, Gabriel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina - Materia
-
Laser-Induced Breakdown Spectroscopy
Libs
Neural Networks
Olive Oils
Edible Oils - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12031
Ver los metadatos del registro completo
id |
CONICETDig_d344c65818f30cfdc368fe1bf015522d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12031 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysisCaceres, JorgeMoncayo, SamuelRosales, Juan D.de Villena, Francisco Javier ManuelAlvira, Fernando CarlosBilmes, Gabriel M.Laser-Induced Breakdown SpectroscopyLibsNeural NetworksOlive OilsEdible Oilshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The adulteration and traceability of olive oils are serious problems in the olive oil industry. In this work, a method based on laser-induced breakdown spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to the identification, quality control, traceability, and adulteration detection of extra virgin olive oils. Instant identification of the samples is achieved using a spectral library, which was obtained by analysis of representative samples using a single laser pulse and treatment by NNs. The samples used in this study belong to four countries. The study also included different regions of each country. The results obtained allow the identification of the oils tested with a certainty of more than 95%. Single-shot measurements were enough for clear identification of the samples. The method can be developed for automatic real-time, fast, reliable, and robust measurements, and the system can be packed into portable form for non-specialist users.Fil: Caceres, Jorge. Universidad Complutense de Madrid; EspañaFil: Moncayo, Samuel. Universidad Complutense de Madrid; EspañaFil: Rosales, Juan D.. Universidad Complutense de Madrid; EspañaFil: de Villena, Francisco Javier Manuel. Universidad Complutense de Madrid; EspañaFil: Alvira, Fernando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Bilmes, Gabriel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingenieria; ArgentinaSoc Applied Spectroscopy2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12031Caceres, Jorge; Moncayo, Samuel; Rosales, Juan D.; de Villena, Francisco Javier Manuel; Alvira, Fernando Carlos; et al.; Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis; Soc Applied Spectroscopy; Applied Spectroscopy; 67; 9; 9-2013; 1064-10720003-7028enginfo:eu-repo/semantics/altIdentifier/doi/10.1366/12-06916info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1366/12-06916info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:57:17Zoai:ri.conicet.gov.ar:11336/12031instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:57:18.209CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
title |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
spellingShingle |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis Caceres, Jorge Laser-Induced Breakdown Spectroscopy Libs Neural Networks Olive Oils Edible Oils |
title_short |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
title_full |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
title_fullStr |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
title_full_unstemmed |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
title_sort |
Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis |
dc.creator.none.fl_str_mv |
Caceres, Jorge Moncayo, Samuel Rosales, Juan D. de Villena, Francisco Javier Manuel Alvira, Fernando Carlos Bilmes, Gabriel M. |
author |
Caceres, Jorge |
author_facet |
Caceres, Jorge Moncayo, Samuel Rosales, Juan D. de Villena, Francisco Javier Manuel Alvira, Fernando Carlos Bilmes, Gabriel M. |
author_role |
author |
author2 |
Moncayo, Samuel Rosales, Juan D. de Villena, Francisco Javier Manuel Alvira, Fernando Carlos Bilmes, Gabriel M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Laser-Induced Breakdown Spectroscopy Libs Neural Networks Olive Oils Edible Oils |
topic |
Laser-Induced Breakdown Spectroscopy Libs Neural Networks Olive Oils Edible Oils |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The adulteration and traceability of olive oils are serious problems in the olive oil industry. In this work, a method based on laser-induced breakdown spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to the identification, quality control, traceability, and adulteration detection of extra virgin olive oils. Instant identification of the samples is achieved using a spectral library, which was obtained by analysis of representative samples using a single laser pulse and treatment by NNs. The samples used in this study belong to four countries. The study also included different regions of each country. The results obtained allow the identification of the oils tested with a certainty of more than 95%. Single-shot measurements were enough for clear identification of the samples. The method can be developed for automatic real-time, fast, reliable, and robust measurements, and the system can be packed into portable form for non-specialist users. Fil: Caceres, Jorge. Universidad Complutense de Madrid; España Fil: Moncayo, Samuel. Universidad Complutense de Madrid; España Fil: Rosales, Juan D.. Universidad Complutense de Madrid; España Fil: de Villena, Francisco Javier Manuel. Universidad Complutense de Madrid; España Fil: Alvira, Fernando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina Fil: Bilmes, Gabriel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina |
description |
The adulteration and traceability of olive oils are serious problems in the olive oil industry. In this work, a method based on laser-induced breakdown spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to the identification, quality control, traceability, and adulteration detection of extra virgin olive oils. Instant identification of the samples is achieved using a spectral library, which was obtained by analysis of representative samples using a single laser pulse and treatment by NNs. The samples used in this study belong to four countries. The study also included different regions of each country. The results obtained allow the identification of the oils tested with a certainty of more than 95%. Single-shot measurements were enough for clear identification of the samples. The method can be developed for automatic real-time, fast, reliable, and robust measurements, and the system can be packed into portable form for non-specialist users. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12031 Caceres, Jorge; Moncayo, Samuel; Rosales, Juan D.; de Villena, Francisco Javier Manuel; Alvira, Fernando Carlos; et al.; Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis; Soc Applied Spectroscopy; Applied Spectroscopy; 67; 9; 9-2013; 1064-1072 0003-7028 |
url |
http://hdl.handle.net/11336/12031 |
identifier_str_mv |
Caceres, Jorge; Moncayo, Samuel; Rosales, Juan D.; de Villena, Francisco Javier Manuel; Alvira, Fernando Carlos; et al.; Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis; Soc Applied Spectroscopy; Applied Spectroscopy; 67; 9; 9-2013; 1064-1072 0003-7028 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1366/12-06916 info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1366/12-06916 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Soc Applied Spectroscopy |
publisher.none.fl_str_mv |
Soc Applied Spectroscopy |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606916466475008 |
score |
13.001348 |