Koszul calculus
- Autores
- Berger, Roland; Lambre, Thierry; Solotar, Andrea Leonor
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a calculus that is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology - resp. homology - by cup products - resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example.
Fil: Berger, Roland. Centre National de la Recherche Scientifique; Francia. Université Jean Monnet; Francia
Fil: Lambre, Thierry. Universite Blaise Pascal; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Koszul
Quadratic algebra
Hochschild
Cup product - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69131
Ver los metadatos del registro completo
id |
CONICETDig_d341dfea7baeb69979a336cd49bb64af |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69131 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Koszul calculusBerger, RolandLambre, ThierrySolotar, Andrea LeonorKoszulQuadratic algebraHochschildCup producthttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a calculus that is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology - resp. homology - by cup products - resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example.Fil: Berger, Roland. Centre National de la Recherche Scientifique; Francia. Université Jean Monnet; FranciaFil: Lambre, Thierry. Universite Blaise Pascal; Francia. Centre National de la Recherche Scientifique; FranciaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaCambridge University Press2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69131Berger, Roland; Lambre, Thierry; Solotar, Andrea Leonor; Koszul calculus; Cambridge University Press; Glasgow Mathematical Journal; 60; 2; 5-2018; 361-3990017-0895CONICET DigitalCONICETenghttps://doi.org/10.1017/S0017089518000137info:eu-repo/semantics/altIdentifier/doi/10.1017/S0017089517000167info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/koszul-calculus/3C88B4F8A1123BAC193B64F0631E49CCinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.00183info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:02:18Zoai:ri.conicet.gov.ar:11336/69131instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:02:18.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Koszul calculus |
title |
Koszul calculus |
spellingShingle |
Koszul calculus Berger, Roland Koszul Quadratic algebra Hochschild Cup product |
title_short |
Koszul calculus |
title_full |
Koszul calculus |
title_fullStr |
Koszul calculus |
title_full_unstemmed |
Koszul calculus |
title_sort |
Koszul calculus |
dc.creator.none.fl_str_mv |
Berger, Roland Lambre, Thierry Solotar, Andrea Leonor |
author |
Berger, Roland |
author_facet |
Berger, Roland Lambre, Thierry Solotar, Andrea Leonor |
author_role |
author |
author2 |
Lambre, Thierry Solotar, Andrea Leonor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Koszul Quadratic algebra Hochschild Cup product |
topic |
Koszul Quadratic algebra Hochschild Cup product |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a calculus that is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology - resp. homology - by cup products - resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example. Fil: Berger, Roland. Centre National de la Recherche Scientifique; Francia. Université Jean Monnet; Francia Fil: Lambre, Thierry. Universite Blaise Pascal; Francia. Centre National de la Recherche Scientifique; Francia Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We present a calculus that is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology - resp. homology - by cup products - resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69131 Berger, Roland; Lambre, Thierry; Solotar, Andrea Leonor; Koszul calculus; Cambridge University Press; Glasgow Mathematical Journal; 60; 2; 5-2018; 361-399 0017-0895 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69131 |
identifier_str_mv |
Berger, Roland; Lambre, Thierry; Solotar, Andrea Leonor; Koszul calculus; Cambridge University Press; Glasgow Mathematical Journal; 60; 2; 5-2018; 361-399 0017-0895 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1017/S0017089518000137 info:eu-repo/semantics/altIdentifier/doi/10.1017/S0017089517000167 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/koszul-calculus/3C88B4F8A1123BAC193B64F0631E49CC info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.00183 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083164381904896 |
score |
13.22299 |