Koszul calculus

Autores
Solotar, Andrea Leonor; Berger, Roland; Lambre, Thierry
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
I will present a calculus which is well-adapted to quadratic algebras. This calculus is defined in Koszul cohomology (homology) by cup products (cap products). Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, Koszul (co)homology provides dierent information than Hochschild (co)homology. Koszul homology is related to de Rham cohomology. If the algebra is Koszul, Koszul cohomology is related to Calabi-Yau property. The calculus is made explicit on a non-Koszul example.
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Berger, Roland. No especifíca;
Fil: Lambre, Thierry. No especifíca;
Workshops at Oberwolfach: hochschild cohomology in algebra, geometry, and topology
Oberwolfach
Alemania
Mathematisches Forschungsinstitut Oberwolfach
Materia
KOSZUL
CALCULUS
HOMOLOGY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258741

id CONICETDig_927dd5c82c4466cc940dea789327a846
oai_identifier_str oai:ri.conicet.gov.ar:11336/258741
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Koszul calculusSolotar, Andrea LeonorBerger, RolandLambre, ThierryKOSZULCALCULUSHOMOLOGYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1I will present a calculus which is well-adapted to quadratic algebras. This calculus is defined in Koszul cohomology (homology) by cup products (cap products). Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, Koszul (co)homology provides dierent information than Hochschild (co)homology. Koszul homology is related to de Rham cohomology. If the algebra is Koszul, Koszul cohomology is related to Calabi-Yau property. The calculus is made explicit on a non-Koszul example.Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Berger, Roland. No especifíca;Fil: Lambre, Thierry. No especifíca;Workshops at Oberwolfach: hochschild cohomology in algebra, geometry, and topologyOberwolfachAlemaniaMathematisches Forschungsinstitut OberwolfachEuropean Mathematical Society2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectWorkshopJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258741Koszul calculus; Workshops at Oberwolfach: hochschild cohomology in algebra, geometry, and topology; Oberwolfach; Alemania; 2016; 31-331660-8933CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/OWR/2016/10info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/owr/articles/14218info:eu-repo/semantics/altIdentifier/url/https://ems.press/content/serial-article-files/46613Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:09Zoai:ri.conicet.gov.ar:11336/258741instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:09.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Koszul calculus
title Koszul calculus
spellingShingle Koszul calculus
Solotar, Andrea Leonor
KOSZUL
CALCULUS
HOMOLOGY
title_short Koszul calculus
title_full Koszul calculus
title_fullStr Koszul calculus
title_full_unstemmed Koszul calculus
title_sort Koszul calculus
dc.creator.none.fl_str_mv Solotar, Andrea Leonor
Berger, Roland
Lambre, Thierry
author Solotar, Andrea Leonor
author_facet Solotar, Andrea Leonor
Berger, Roland
Lambre, Thierry
author_role author
author2 Berger, Roland
Lambre, Thierry
author2_role author
author
dc.subject.none.fl_str_mv KOSZUL
CALCULUS
HOMOLOGY
topic KOSZUL
CALCULUS
HOMOLOGY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv I will present a calculus which is well-adapted to quadratic algebras. This calculus is defined in Koszul cohomology (homology) by cup products (cap products). Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, Koszul (co)homology provides dierent information than Hochschild (co)homology. Koszul homology is related to de Rham cohomology. If the algebra is Koszul, Koszul cohomology is related to Calabi-Yau property. The calculus is made explicit on a non-Koszul example.
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Berger, Roland. No especifíca;
Fil: Lambre, Thierry. No especifíca;
Workshops at Oberwolfach: hochschild cohomology in algebra, geometry, and topology
Oberwolfach
Alemania
Mathematisches Forschungsinstitut Oberwolfach
description I will present a calculus which is well-adapted to quadratic algebras. This calculus is defined in Koszul cohomology (homology) by cup products (cap products). Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, Koszul (co)homology provides dierent information than Hochschild (co)homology. Koszul homology is related to de Rham cohomology. If the algebra is Koszul, Koszul cohomology is related to Calabi-Yau property. The calculus is made explicit on a non-Koszul example.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Workshop
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258741
Koszul calculus; Workshops at Oberwolfach: hochschild cohomology in algebra, geometry, and topology; Oberwolfach; Alemania; 2016; 31-33
1660-8933
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258741
identifier_str_mv Koszul calculus; Workshops at Oberwolfach: hochschild cohomology in algebra, geometry, and topology; Oberwolfach; Alemania; 2016; 31-33
1660-8933
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4171/OWR/2016/10
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/owr/articles/14218
info:eu-repo/semantics/altIdentifier/url/https://ems.press/content/serial-article-files/46613
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269016095195136
score 13.13397