System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs
- Autores
- Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; Gandolfo, Daniel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller.
Fil: Recalde Simancas, Luis Fernando. Universidad Tecnologica Indoamerica.; Ecuador
Fil: Guevara Bermeo, Bryan Stefano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Andaluz Ortiz, Victor Hugo. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Varela Aldás, José. Universidad Tecnologica Indoamerica.; Ecuador. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Gandolfo, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
SYSTEM IDENTIFICATION
MODEL PREDICTIVE CONTROL
OBSTACLE AVOIDANCE
HEXACOPTER UAV
SYSTEM CONSTRAINTS
OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210833
Ver los metadatos del registro completo
id |
CONICETDig_d306b7d6c096a03dc3fa188888b5c4bd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210833 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVsRecalde Simancas, Luis FernandoGuevara Bermeo, Bryan StefanoCarvajal Cabrera, Christian PatricioAndaluz Ortiz, Victor HugoVarela Aldás, JoséGandolfo, DanielSYSTEM IDENTIFICATIONMODEL PREDICTIVE CONTROLOBSTACLE AVOIDANCEHEXACOPTER UAVSYSTEM CONSTRAINTSOPTIMIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller.Fil: Recalde Simancas, Luis Fernando. Universidad Tecnologica Indoamerica.; EcuadorFil: Guevara Bermeo, Bryan Stefano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Andaluz Ortiz, Victor Hugo. Universidad de Las Fuerzas Armadas; EcuadorFil: Varela Aldás, José. Universidad Tecnologica Indoamerica.; Ecuador. Universidad de Zaragoza. Facultad de Ciencias; EspañaFil: Gandolfo, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaMolecular Diversity Preservation International2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210833Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; et al.; System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs; Molecular Diversity Preservation International; Sensors; 22; 4712; 7-2022; 1-291424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/22/13/4712info:eu-repo/semantics/altIdentifier/doi/10.3390/s22134712info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:25Zoai:ri.conicet.gov.ar:11336/210833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:25.42CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
title |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
spellingShingle |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs Recalde Simancas, Luis Fernando SYSTEM IDENTIFICATION MODEL PREDICTIVE CONTROL OBSTACLE AVOIDANCE HEXACOPTER UAV SYSTEM CONSTRAINTS OPTIMIZATION |
title_short |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
title_full |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
title_fullStr |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
title_full_unstemmed |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
title_sort |
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs |
dc.creator.none.fl_str_mv |
Recalde Simancas, Luis Fernando Guevara Bermeo, Bryan Stefano Carvajal Cabrera, Christian Patricio Andaluz Ortiz, Victor Hugo Varela Aldás, José Gandolfo, Daniel |
author |
Recalde Simancas, Luis Fernando |
author_facet |
Recalde Simancas, Luis Fernando Guevara Bermeo, Bryan Stefano Carvajal Cabrera, Christian Patricio Andaluz Ortiz, Victor Hugo Varela Aldás, José Gandolfo, Daniel |
author_role |
author |
author2 |
Guevara Bermeo, Bryan Stefano Carvajal Cabrera, Christian Patricio Andaluz Ortiz, Victor Hugo Varela Aldás, José Gandolfo, Daniel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
SYSTEM IDENTIFICATION MODEL PREDICTIVE CONTROL OBSTACLE AVOIDANCE HEXACOPTER UAV SYSTEM CONSTRAINTS OPTIMIZATION |
topic |
SYSTEM IDENTIFICATION MODEL PREDICTIVE CONTROL OBSTACLE AVOIDANCE HEXACOPTER UAV SYSTEM CONSTRAINTS OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller. Fil: Recalde Simancas, Luis Fernando. Universidad Tecnologica Indoamerica.; Ecuador Fil: Guevara Bermeo, Bryan Stefano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Andaluz Ortiz, Victor Hugo. Universidad de Las Fuerzas Armadas; Ecuador Fil: Varela Aldás, José. Universidad Tecnologica Indoamerica.; Ecuador. Universidad de Zaragoza. Facultad de Ciencias; España Fil: Gandolfo, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210833 Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; et al.; System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs; Molecular Diversity Preservation International; Sensors; 22; 4712; 7-2022; 1-29 1424-8220 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210833 |
identifier_str_mv |
Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; et al.; System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs; Molecular Diversity Preservation International; Sensors; 22; 4712; 7-2022; 1-29 1424-8220 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/22/13/4712 info:eu-repo/semantics/altIdentifier/doi/10.3390/s22134712 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613912190779392 |
score |
13.070432 |