Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs
- Autores
- Murillo, Marina Hebe; Limache, Alejandro Cesar; Rojas Fredini, Pablo Sebastián; Giovanini, Leonardo Luis
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Model Predictive Control (MPC) is a modern technique that, nowadays, encapsulates different optimal control techniques. For the case of non-linear dynamics, many possible variants can be developed which can lead to new control algorithms. In this manuscript a novel generic control system method is presented. This method can be applied to control, in an optimal way, different systems having non-linear dynamics. Particularly, in this paper, the proposed technique is presented in the context of developing a control system for autonomous flight of UAVs. This technique can be used for different types of aerial vehicles having any type of generic non-linear dynamics. The presented method is based on the use of iteratively defined optimal candidate state-space trajectories in global state-space. The method uses a generalized linearization process which, opposite to standard methods, does not need to be predefined in a certain equilibrium state but instead it is performed along any arbitrary state. The technique allows the inclusion of constraints with ease. The presented technique is used as a centralized control system unit that is able to control the full aircraft dynamics without the need of decoupling the system in different reduced modes. The technique is tested by making a Cessna 172 airplane model to perform the following autonomous unmanned maneuvers: climbing at constant speed to a desired altitude, heading change to a desired flight direction, and, coordinate turn.
Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Uav
Non-Linear Predictive Control
Navigation And Control
Model Predictive Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44508
Ver los metadatos del registro completo
id |
CONICETDig_64c604cef1e8f3332af49ccac8ff9020 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44508 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVsMurillo, Marina HebeLimache, Alejandro CesarRojas Fredini, Pablo SebastiánGiovanini, Leonardo LuisUavNon-Linear Predictive ControlNavigation And ControlModel Predictive Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Model Predictive Control (MPC) is a modern technique that, nowadays, encapsulates different optimal control techniques. For the case of non-linear dynamics, many possible variants can be developed which can lead to new control algorithms. In this manuscript a novel generic control system method is presented. This method can be applied to control, in an optimal way, different systems having non-linear dynamics. Particularly, in this paper, the proposed technique is presented in the context of developing a control system for autonomous flight of UAVs. This technique can be used for different types of aerial vehicles having any type of generic non-linear dynamics. The presented method is based on the use of iteratively defined optimal candidate state-space trajectories in global state-space. The method uses a generalized linearization process which, opposite to standard methods, does not need to be predefined in a certain equilibrium state but instead it is performed along any arbitrary state. The technique allows the inclusion of constraints with ease. The presented technique is used as a centralized control system unit that is able to control the full aircraft dynamics without the need of decoupling the system in different reduced modes. The technique is tested by making a Cessna 172 airplane model to perform the following autonomous unmanned maneuvers: climbing at constant speed to a desired altitude, heading change to a desired flight direction, and, coordinate turn.Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaInst Control Robotics & Systems2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44508Murillo, Marina Hebe; Limache, Alejandro Cesar; Rojas Fredini, Pablo Sebastián; Giovanini, Leonardo Luis; Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs; Inst Control Robotics & Systems; International Journal Of Control Automation And Systems; 13; 2; 4-2015; 361-3701598-6446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s12555-013-0416-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12555-013-0416-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:51Zoai:ri.conicet.gov.ar:11336/44508instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:51.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
title |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
spellingShingle |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs Murillo, Marina Hebe Uav Non-Linear Predictive Control Navigation And Control Model Predictive Control |
title_short |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
title_full |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
title_fullStr |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
title_full_unstemmed |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
title_sort |
Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs |
dc.creator.none.fl_str_mv |
Murillo, Marina Hebe Limache, Alejandro Cesar Rojas Fredini, Pablo Sebastián Giovanini, Leonardo Luis |
author |
Murillo, Marina Hebe |
author_facet |
Murillo, Marina Hebe Limache, Alejandro Cesar Rojas Fredini, Pablo Sebastián Giovanini, Leonardo Luis |
author_role |
author |
author2 |
Limache, Alejandro Cesar Rojas Fredini, Pablo Sebastián Giovanini, Leonardo Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Uav Non-Linear Predictive Control Navigation And Control Model Predictive Control |
topic |
Uav Non-Linear Predictive Control Navigation And Control Model Predictive Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Model Predictive Control (MPC) is a modern technique that, nowadays, encapsulates different optimal control techniques. For the case of non-linear dynamics, many possible variants can be developed which can lead to new control algorithms. In this manuscript a novel generic control system method is presented. This method can be applied to control, in an optimal way, different systems having non-linear dynamics. Particularly, in this paper, the proposed technique is presented in the context of developing a control system for autonomous flight of UAVs. This technique can be used for different types of aerial vehicles having any type of generic non-linear dynamics. The presented method is based on the use of iteratively defined optimal candidate state-space trajectories in global state-space. The method uses a generalized linearization process which, opposite to standard methods, does not need to be predefined in a certain equilibrium state but instead it is performed along any arbitrary state. The technique allows the inclusion of constraints with ease. The presented technique is used as a centralized control system unit that is able to control the full aircraft dynamics without the need of decoupling the system in different reduced modes. The technique is tested by making a Cessna 172 airplane model to perform the following autonomous unmanned maneuvers: climbing at constant speed to a desired altitude, heading change to a desired flight direction, and, coordinate turn. Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Model Predictive Control (MPC) is a modern technique that, nowadays, encapsulates different optimal control techniques. For the case of non-linear dynamics, many possible variants can be developed which can lead to new control algorithms. In this manuscript a novel generic control system method is presented. This method can be applied to control, in an optimal way, different systems having non-linear dynamics. Particularly, in this paper, the proposed technique is presented in the context of developing a control system for autonomous flight of UAVs. This technique can be used for different types of aerial vehicles having any type of generic non-linear dynamics. The presented method is based on the use of iteratively defined optimal candidate state-space trajectories in global state-space. The method uses a generalized linearization process which, opposite to standard methods, does not need to be predefined in a certain equilibrium state but instead it is performed along any arbitrary state. The technique allows the inclusion of constraints with ease. The presented technique is used as a centralized control system unit that is able to control the full aircraft dynamics without the need of decoupling the system in different reduced modes. The technique is tested by making a Cessna 172 airplane model to perform the following autonomous unmanned maneuvers: climbing at constant speed to a desired altitude, heading change to a desired flight direction, and, coordinate turn. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44508 Murillo, Marina Hebe; Limache, Alejandro Cesar; Rojas Fredini, Pablo Sebastián; Giovanini, Leonardo Luis; Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs; Inst Control Robotics & Systems; International Journal Of Control Automation And Systems; 13; 2; 4-2015; 361-370 1598-6446 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44508 |
identifier_str_mv |
Murillo, Marina Hebe; Limache, Alejandro Cesar; Rojas Fredini, Pablo Sebastián; Giovanini, Leonardo Luis; Generalized nonlinear optimal predictive control using iterative state-space trajectories: Applications to autonomous flight of UAVs; Inst Control Robotics & Systems; International Journal Of Control Automation And Systems; 13; 2; 4-2015; 361-370 1598-6446 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s12555-013-0416-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s12555-013-0416-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Inst Control Robotics & Systems |
publisher.none.fl_str_mv |
Inst Control Robotics & Systems |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614399633915904 |
score |
13.070432 |