The set of partial isometries as a quotient Finsler space
- Autores
- Andruchow, Esteban
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
PARTIAL ISOMETRIES
FINSLER METRIC
MINIMAL CURVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163816
Ver los metadatos del registro completo
id |
CONICETDig_bd1eb65933e56e50395ea15fbebb35c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163816 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The set of partial isometries as a quotient Finsler spaceAndruchow, EstebanPARTIAL ISOMETRIESFINSLER METRICMINIMAL CURVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163816Andruchow, Esteban; The set of partial isometries as a quotient Finsler space; Elsevier Science; Indagationes Mathematicae-new Series; 33; 4; 7-2022; 736-7520019-3577CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.indag.2022.02.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0019357722000052?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2112.05119info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:04:31Zoai:ri.conicet.gov.ar:11336/163816instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:04:31.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The set of partial isometries as a quotient Finsler space |
title |
The set of partial isometries as a quotient Finsler space |
spellingShingle |
The set of partial isometries as a quotient Finsler space Andruchow, Esteban PARTIAL ISOMETRIES FINSLER METRIC MINIMAL CURVES |
title_short |
The set of partial isometries as a quotient Finsler space |
title_full |
The set of partial isometries as a quotient Finsler space |
title_fullStr |
The set of partial isometries as a quotient Finsler space |
title_full_unstemmed |
The set of partial isometries as a quotient Finsler space |
title_sort |
The set of partial isometries as a quotient Finsler space |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
PARTIAL ISOMETRIES FINSLER METRIC MINIMAL CURVES |
topic |
PARTIAL ISOMETRIES FINSLER METRIC MINIMAL CURVES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163816 Andruchow, Esteban; The set of partial isometries as a quotient Finsler space; Elsevier Science; Indagationes Mathematicae-new Series; 33; 4; 7-2022; 736-752 0019-3577 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163816 |
identifier_str_mv |
Andruchow, Esteban; The set of partial isometries as a quotient Finsler space; Elsevier Science; Indagationes Mathematicae-new Series; 33; 4; 7-2022; 736-752 0019-3577 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.indag.2022.02.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0019357722000052?via%3Dihub info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2112.05119 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083188544241664 |
score |
13.221938 |