The set of partial isometries as a quotient Finsler space

Autores
Andruchow, Esteban
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
PARTIAL ISOMETRIES
FINSLER METRIC
MINIMAL CURVES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/163816

id CONICETDig_bd1eb65933e56e50395ea15fbebb35c3
oai_identifier_str oai:ri.conicet.gov.ar:11336/163816
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The set of partial isometries as a quotient Finsler spaceAndruchow, EstebanPARTIAL ISOMETRIESFINSLER METRICMINIMAL CURVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163816Andruchow, Esteban; The set of partial isometries as a quotient Finsler space; Elsevier Science; Indagationes Mathematicae-new Series; 33; 4; 7-2022; 736-7520019-3577CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.indag.2022.02.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0019357722000052?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2112.05119info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:04:31Zoai:ri.conicet.gov.ar:11336/163816instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:04:31.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The set of partial isometries as a quotient Finsler space
title The set of partial isometries as a quotient Finsler space
spellingShingle The set of partial isometries as a quotient Finsler space
Andruchow, Esteban
PARTIAL ISOMETRIES
FINSLER METRIC
MINIMAL CURVES
title_short The set of partial isometries as a quotient Finsler space
title_full The set of partial isometries as a quotient Finsler space
title_fullStr The set of partial isometries as a quotient Finsler space
title_full_unstemmed The set of partial isometries as a quotient Finsler space
title_sort The set of partial isometries as a quotient Finsler space
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv PARTIAL ISOMETRIES
FINSLER METRIC
MINIMAL CURVES
topic PARTIAL ISOMETRIES
FINSLER METRIC
MINIMAL CURVES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description A known general program, designed to endow the quotient space UA/UB of the unitary groups UA, UB of the C∗ algebras B⊂A with an invariant Finsler metric, is applied to obtain a metric for the space I(H) of partial isometries of a Hilbert space H. I(H) is a quotient of the unitary group of B(H)×B(H), where B(H) is the algebra of bounded linear operators in H. Under this program, the solution of a linear best approximation problem leads to the computation of minimal geodesics in the quotient space. We find solutions of this best approximation problem, and study properties of the minimal geodesics obtained.
publishDate 2022
dc.date.none.fl_str_mv 2022-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/163816
Andruchow, Esteban; The set of partial isometries as a quotient Finsler space; Elsevier Science; Indagationes Mathematicae-new Series; 33; 4; 7-2022; 736-752
0019-3577
CONICET Digital
CONICET
url http://hdl.handle.net/11336/163816
identifier_str_mv Andruchow, Esteban; The set of partial isometries as a quotient Finsler space; Elsevier Science; Indagationes Mathematicae-new Series; 33; 4; 7-2022; 736-752
0019-3577
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.indag.2022.02.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0019357722000052?via%3Dihub
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2112.05119
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083188544241664
score 13.221938