Polynomial stability of a joint-leg-beam system with local damping
- Autores
- Burns, J. A.; Cliff, E. M.; Liu, Z.; Spies, Ruben Daniel
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent advances in the design and construction of large inflatable/rigidizable space structures and potential new applications of such structures have produced a demand for better analysis and computational tools to deal with the new class of structures. Understanding stability and damping properties of truss systems composed of these materials is central to the successful operation of future systems. In this paper, we consider a mathematical model for an assembly of two elastic beams connected to a joint through legs. The dynamic joint model is composed of two rigid bodies (the joint-legs) with an internal moment. In an ideal design all struts and joints will have identical material and geometric properties. In this case we previously established exponential stability of the beam-joint system. However, in order to apply theoretical stability estimates to realistic systems one must deal with the case where the individual truss components are not identical and still be able to analyze damping. We consider a problem of this type where one beam is assumed to have a small Kelvin-Voigt damping parameter and the second beam has no damping. In this case, we prove that the component system is only polynomially damped even if additional rotational damping is assumed in the joint.
Fil: Burns, J. A.. Virginia Polytechnic Institute; Estados Unidos
Fil: Cliff, E. M.. Virginia Polytechnic Institute; Estados Unidos
Fil: Liu, Z.. University of Minnesota; Estados Unidos
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
BEAM
DAMPING
POLYNOMIAL DECAY RATE
SEMIGROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84242
Ver los metadatos del registro completo
id |
CONICETDig_d1ccb93d6110160f785774daec533d4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84242 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polynomial stability of a joint-leg-beam system with local dampingBurns, J. A.Cliff, E. M.Liu, Z.Spies, Ruben DanielBEAMDAMPINGPOLYNOMIAL DECAY RATESEMIGROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recent advances in the design and construction of large inflatable/rigidizable space structures and potential new applications of such structures have produced a demand for better analysis and computational tools to deal with the new class of structures. Understanding stability and damping properties of truss systems composed of these materials is central to the successful operation of future systems. In this paper, we consider a mathematical model for an assembly of two elastic beams connected to a joint through legs. The dynamic joint model is composed of two rigid bodies (the joint-legs) with an internal moment. In an ideal design all struts and joints will have identical material and geometric properties. In this case we previously established exponential stability of the beam-joint system. However, in order to apply theoretical stability estimates to realistic systems one must deal with the case where the individual truss components are not identical and still be able to analyze damping. We consider a problem of this type where one beam is assumed to have a small Kelvin-Voigt damping parameter and the second beam has no damping. In this case, we prove that the component system is only polynomially damped even if additional rotational damping is assumed in the joint.Fil: Burns, J. A.. Virginia Polytechnic Institute; Estados UnidosFil: Cliff, E. M.. Virginia Polytechnic Institute; Estados UnidosFil: Liu, Z.. University of Minnesota; Estados UnidosFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElsevier2007-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84242Burns, J. A.; Cliff, E. M.; Liu, Z.; Spies, Ruben Daniel; Polynomial stability of a joint-leg-beam system with local damping; Elsevier; Mathematical And Computer Modelling; 46; 9-10; 11-2007; 1236-12460895-7177CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.mcm.2006.11.037info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0895717707000519info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:23Zoai:ri.conicet.gov.ar:11336/84242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:23.452CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polynomial stability of a joint-leg-beam system with local damping |
title |
Polynomial stability of a joint-leg-beam system with local damping |
spellingShingle |
Polynomial stability of a joint-leg-beam system with local damping Burns, J. A. BEAM DAMPING POLYNOMIAL DECAY RATE SEMIGROUP |
title_short |
Polynomial stability of a joint-leg-beam system with local damping |
title_full |
Polynomial stability of a joint-leg-beam system with local damping |
title_fullStr |
Polynomial stability of a joint-leg-beam system with local damping |
title_full_unstemmed |
Polynomial stability of a joint-leg-beam system with local damping |
title_sort |
Polynomial stability of a joint-leg-beam system with local damping |
dc.creator.none.fl_str_mv |
Burns, J. A. Cliff, E. M. Liu, Z. Spies, Ruben Daniel |
author |
Burns, J. A. |
author_facet |
Burns, J. A. Cliff, E. M. Liu, Z. Spies, Ruben Daniel |
author_role |
author |
author2 |
Cliff, E. M. Liu, Z. Spies, Ruben Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BEAM DAMPING POLYNOMIAL DECAY RATE SEMIGROUP |
topic |
BEAM DAMPING POLYNOMIAL DECAY RATE SEMIGROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recent advances in the design and construction of large inflatable/rigidizable space structures and potential new applications of such structures have produced a demand for better analysis and computational tools to deal with the new class of structures. Understanding stability and damping properties of truss systems composed of these materials is central to the successful operation of future systems. In this paper, we consider a mathematical model for an assembly of two elastic beams connected to a joint through legs. The dynamic joint model is composed of two rigid bodies (the joint-legs) with an internal moment. In an ideal design all struts and joints will have identical material and geometric properties. In this case we previously established exponential stability of the beam-joint system. However, in order to apply theoretical stability estimates to realistic systems one must deal with the case where the individual truss components are not identical and still be able to analyze damping. We consider a problem of this type where one beam is assumed to have a small Kelvin-Voigt damping parameter and the second beam has no damping. In this case, we prove that the component system is only polynomially damped even if additional rotational damping is assumed in the joint. Fil: Burns, J. A.. Virginia Polytechnic Institute; Estados Unidos Fil: Cliff, E. M.. Virginia Polytechnic Institute; Estados Unidos Fil: Liu, Z.. University of Minnesota; Estados Unidos Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Recent advances in the design and construction of large inflatable/rigidizable space structures and potential new applications of such structures have produced a demand for better analysis and computational tools to deal with the new class of structures. Understanding stability and damping properties of truss systems composed of these materials is central to the successful operation of future systems. In this paper, we consider a mathematical model for an assembly of two elastic beams connected to a joint through legs. The dynamic joint model is composed of two rigid bodies (the joint-legs) with an internal moment. In an ideal design all struts and joints will have identical material and geometric properties. In this case we previously established exponential stability of the beam-joint system. However, in order to apply theoretical stability estimates to realistic systems one must deal with the case where the individual truss components are not identical and still be able to analyze damping. We consider a problem of this type where one beam is assumed to have a small Kelvin-Voigt damping parameter and the second beam has no damping. In this case, we prove that the component system is only polynomially damped even if additional rotational damping is assumed in the joint. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84242 Burns, J. A.; Cliff, E. M.; Liu, Z.; Spies, Ruben Daniel; Polynomial stability of a joint-leg-beam system with local damping; Elsevier; Mathematical And Computer Modelling; 46; 9-10; 11-2007; 1236-1246 0895-7177 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84242 |
identifier_str_mv |
Burns, J. A.; Cliff, E. M.; Liu, Z.; Spies, Ruben Daniel; Polynomial stability of a joint-leg-beam system with local damping; Elsevier; Mathematical And Computer Modelling; 46; 9-10; 11-2007; 1236-1246 0895-7177 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mcm.2006.11.037 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0895717707000519 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614418660327424 |
score |
13.070432 |