A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting
- Autores
- Machado, Sebastián Pablo; Febbo, Mariano; Gatti, Claudio David; Osinaga, Santiago Manuel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To predict electrical generation in piezoelectric small-scale beam energy harvesting devices, it is important to have a complete mathematical model that captures the different associated phenomena. In the literature, some authors propose several alternatives of non-linear mathematical formulations, with non-linearities coming from different physical aspects. All these formulations present good aptitudes to predict the nonlinear behavior of the system under different values of accelerations, geometry and boundary conditions. At the same time, they do not represent a unified general proposal for modeling multimodal energy harvesting devices of any type of mode generation and boundary conditions at large excitations. In this sense, this paper presents a mathematical description of inextensional nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters (geometric, material and damping non-linearities). The developed analytical model yields a total set of N+ 1 ordinary differential equations for the first N modes and for the output voltage. However, direct solution of this ordinary nonlinear differential system of N equations is computationally costly. Instead, a reduced algebraic system of 2 algebraic equations is proposed applying the method of averaging. Its main advantage is that it makes more suitable and computationally economical for the implementation of a parameter identification process involving any number of piezoelectric inserts (unimorph or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for some selected physical systems to test the validity of the assumptions: a numerical one, by the direct integration of the equations of motion and an experimental one. A final comparison between the results demonstrates the importance of the having a unified nonlinear model to predict the generated voltage in multimodal energy harvesters.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Gatti, Claudio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina
Fil: Osinaga, Santiago Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina - Materia
-
GEOMETRICAL AND DAMPING NON-LINEARITIES
MATERIAL
MULTIMODAL SYSTEMS
PIEZOELECTRIC ENERGY HARVESTING
REDUCED ALGEBRAIC EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141221
Ver los metadatos del registro completo
id |
CONICETDig_c177eab5b73aabd2efd2e0e700b33faa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141221 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvestingMachado, Sebastián PabloFebbo, MarianoGatti, Claudio DavidOsinaga, Santiago ManuelGEOMETRICAL AND DAMPING NON-LINEARITIESMATERIALMULTIMODAL SYSTEMSPIEZOELECTRIC ENERGY HARVESTINGREDUCED ALGEBRAIC EQUATIONShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2To predict electrical generation in piezoelectric small-scale beam energy harvesting devices, it is important to have a complete mathematical model that captures the different associated phenomena. In the literature, some authors propose several alternatives of non-linear mathematical formulations, with non-linearities coming from different physical aspects. All these formulations present good aptitudes to predict the nonlinear behavior of the system under different values of accelerations, geometry and boundary conditions. At the same time, they do not represent a unified general proposal for modeling multimodal energy harvesting devices of any type of mode generation and boundary conditions at large excitations. In this sense, this paper presents a mathematical description of inextensional nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters (geometric, material and damping non-linearities). The developed analytical model yields a total set of N+ 1 ordinary differential equations for the first N modes and for the output voltage. However, direct solution of this ordinary nonlinear differential system of N equations is computationally costly. Instead, a reduced algebraic system of 2 algebraic equations is proposed applying the method of averaging. Its main advantage is that it makes more suitable and computationally economical for the implementation of a parameter identification process involving any number of piezoelectric inserts (unimorph or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for some selected physical systems to test the validity of the assumptions: a numerical one, by the direct integration of the equations of motion and an experimental one. A final comparison between the results demonstrates the importance of the having a unified nonlinear model to predict the generated voltage in multimodal energy harvesters.Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; ArgentinaFil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Gatti, Claudio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; ArgentinaFil: Osinaga, Santiago Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; ArgentinaIOP Publishing2020-09-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141221Machado, Sebastián Pablo; Febbo, Mariano; Gatti, Claudio David; Osinaga, Santiago Manuel; A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting; IOP Publishing; Smart Materials & Structures; 29; 9; 10-9-2020; 1-150964-1726CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-665X/ab9ddbinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-665X/ab9ddbinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:40Zoai:ri.conicet.gov.ar:11336/141221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:41.163CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
title |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
spellingShingle |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting Machado, Sebastián Pablo GEOMETRICAL AND DAMPING NON-LINEARITIES MATERIAL MULTIMODAL SYSTEMS PIEZOELECTRIC ENERGY HARVESTING REDUCED ALGEBRAIC EQUATIONS |
title_short |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
title_full |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
title_fullStr |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
title_full_unstemmed |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
title_sort |
A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting |
dc.creator.none.fl_str_mv |
Machado, Sebastián Pablo Febbo, Mariano Gatti, Claudio David Osinaga, Santiago Manuel |
author |
Machado, Sebastián Pablo |
author_facet |
Machado, Sebastián Pablo Febbo, Mariano Gatti, Claudio David Osinaga, Santiago Manuel |
author_role |
author |
author2 |
Febbo, Mariano Gatti, Claudio David Osinaga, Santiago Manuel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
GEOMETRICAL AND DAMPING NON-LINEARITIES MATERIAL MULTIMODAL SYSTEMS PIEZOELECTRIC ENERGY HARVESTING REDUCED ALGEBRAIC EQUATIONS |
topic |
GEOMETRICAL AND DAMPING NON-LINEARITIES MATERIAL MULTIMODAL SYSTEMS PIEZOELECTRIC ENERGY HARVESTING REDUCED ALGEBRAIC EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
To predict electrical generation in piezoelectric small-scale beam energy harvesting devices, it is important to have a complete mathematical model that captures the different associated phenomena. In the literature, some authors propose several alternatives of non-linear mathematical formulations, with non-linearities coming from different physical aspects. All these formulations present good aptitudes to predict the nonlinear behavior of the system under different values of accelerations, geometry and boundary conditions. At the same time, they do not represent a unified general proposal for modeling multimodal energy harvesting devices of any type of mode generation and boundary conditions at large excitations. In this sense, this paper presents a mathematical description of inextensional nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters (geometric, material and damping non-linearities). The developed analytical model yields a total set of N+ 1 ordinary differential equations for the first N modes and for the output voltage. However, direct solution of this ordinary nonlinear differential system of N equations is computationally costly. Instead, a reduced algebraic system of 2 algebraic equations is proposed applying the method of averaging. Its main advantage is that it makes more suitable and computationally economical for the implementation of a parameter identification process involving any number of piezoelectric inserts (unimorph or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for some selected physical systems to test the validity of the assumptions: a numerical one, by the direct integration of the equations of motion and an experimental one. A final comparison between the results demonstrates the importance of the having a unified nonlinear model to predict the generated voltage in multimodal energy harvesters. Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Gatti, Claudio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina Fil: Osinaga, Santiago Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnologica Nacional. Facultad Regional Bahia Blanca. Grupo de Investigacion En Multifisica Aplicada. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Grupo de Investigacion En Multifisica Aplicada.; Argentina |
description |
To predict electrical generation in piezoelectric small-scale beam energy harvesting devices, it is important to have a complete mathematical model that captures the different associated phenomena. In the literature, some authors propose several alternatives of non-linear mathematical formulations, with non-linearities coming from different physical aspects. All these formulations present good aptitudes to predict the nonlinear behavior of the system under different values of accelerations, geometry and boundary conditions. At the same time, they do not represent a unified general proposal for modeling multimodal energy harvesting devices of any type of mode generation and boundary conditions at large excitations. In this sense, this paper presents a mathematical description of inextensional nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters (geometric, material and damping non-linearities). The developed analytical model yields a total set of N+ 1 ordinary differential equations for the first N modes and for the output voltage. However, direct solution of this ordinary nonlinear differential system of N equations is computationally costly. Instead, a reduced algebraic system of 2 algebraic equations is proposed applying the method of averaging. Its main advantage is that it makes more suitable and computationally economical for the implementation of a parameter identification process involving any number of piezoelectric inserts (unimorph or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for some selected physical systems to test the validity of the assumptions: a numerical one, by the direct integration of the equations of motion and an experimental one. A final comparison between the results demonstrates the importance of the having a unified nonlinear model to predict the generated voltage in multimodal energy harvesters. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141221 Machado, Sebastián Pablo; Febbo, Mariano; Gatti, Claudio David; Osinaga, Santiago Manuel; A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting; IOP Publishing; Smart Materials & Structures; 29; 9; 10-9-2020; 1-15 0964-1726 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141221 |
identifier_str_mv |
Machado, Sebastián Pablo; Febbo, Mariano; Gatti, Claudio David; Osinaga, Santiago Manuel; A piezoelectric beam model with geometric, material and damping nonlinearities for energy harvesting; IOP Publishing; Smart Materials & Structures; 29; 9; 10-9-2020; 1-15 0964-1726 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-665X/ab9ddb info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-665X/ab9ddb |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614113623277568 |
score |
13.070432 |