Existence of optimal subspaces in reflexive Banach spaces
- Autores
- Cuenya, Hector Hugo; Levis, Fabián Eduardo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a finite set Y in a reflexive Banach space F and a family C of closed subspaces of F, we study the problem of finding a subspace W in C that best approximates the data Y in the sense that sum_{f in Y} d(f,W) = min_{V in C} sum_{f in Y} d(f,V), where d is the distance function on F. In this paper, we give necessary conditions and sufficient conditions over C for which such a best approximation exists. In particular, when F has finite dimension a characterization on C is given.
Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Optimal Subspaces
Existence
Reflexive Banach Space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47263
Ver los metadatos del registro completo
id |
CONICETDig_b8ccf492bd3a7504d4a4884b39307482 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47263 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Existence of optimal subspaces in reflexive Banach spacesCuenya, Hector HugoLevis, Fabián EduardoOptimal SubspacesExistenceReflexive Banach Spacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a finite set Y in a reflexive Banach space F and a family C of closed subspaces of F, we study the problem of finding a subspace W in C that best approximates the data Y in the sense that sum_{f in Y} d(f,W) = min_{V in C} sum_{f in Y} d(f,V), where d is the distance function on F. In this paper, we give necessary conditions and sufficient conditions over C for which such a best approximation exists. In particular, when F has finite dimension a characterization on C is given.Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDuke University Press2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47263Cuenya, Hector Hugo; Levis, Fabián Eduardo; Existence of optimal subspaces in reflexive Banach spaces; Duke University Press; Annals of Functional Analysis; 6; 2; 2-2015; 69-772008-8752CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.afa/1418997767info:eu-repo/semantics/altIdentifier/doi/10.15352/afa/06-2-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:19Zoai:ri.conicet.gov.ar:11336/47263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:19.272CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Existence of optimal subspaces in reflexive Banach spaces |
title |
Existence of optimal subspaces in reflexive Banach spaces |
spellingShingle |
Existence of optimal subspaces in reflexive Banach spaces Cuenya, Hector Hugo Optimal Subspaces Existence Reflexive Banach Space |
title_short |
Existence of optimal subspaces in reflexive Banach spaces |
title_full |
Existence of optimal subspaces in reflexive Banach spaces |
title_fullStr |
Existence of optimal subspaces in reflexive Banach spaces |
title_full_unstemmed |
Existence of optimal subspaces in reflexive Banach spaces |
title_sort |
Existence of optimal subspaces in reflexive Banach spaces |
dc.creator.none.fl_str_mv |
Cuenya, Hector Hugo Levis, Fabián Eduardo |
author |
Cuenya, Hector Hugo |
author_facet |
Cuenya, Hector Hugo Levis, Fabián Eduardo |
author_role |
author |
author2 |
Levis, Fabián Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Optimal Subspaces Existence Reflexive Banach Space |
topic |
Optimal Subspaces Existence Reflexive Banach Space |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a finite set Y in a reflexive Banach space F and a family C of closed subspaces of F, we study the problem of finding a subspace W in C that best approximates the data Y in the sense that sum_{f in Y} d(f,W) = min_{V in C} sum_{f in Y} d(f,V), where d is the distance function on F. In this paper, we give necessary conditions and sufficient conditions over C for which such a best approximation exists. In particular, when F has finite dimension a characterization on C is given. Fil: Cuenya, Hector Hugo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given a finite set Y in a reflexive Banach space F and a family C of closed subspaces of F, we study the problem of finding a subspace W in C that best approximates the data Y in the sense that sum_{f in Y} d(f,W) = min_{V in C} sum_{f in Y} d(f,V), where d is the distance function on F. In this paper, we give necessary conditions and sufficient conditions over C for which such a best approximation exists. In particular, when F has finite dimension a characterization on C is given. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47263 Cuenya, Hector Hugo; Levis, Fabián Eduardo; Existence of optimal subspaces in reflexive Banach spaces; Duke University Press; Annals of Functional Analysis; 6; 2; 2-2015; 69-77 2008-8752 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47263 |
identifier_str_mv |
Cuenya, Hector Hugo; Levis, Fabián Eduardo; Existence of optimal subspaces in reflexive Banach spaces; Duke University Press; Annals of Functional Analysis; 6; 2; 2-2015; 69-77 2008-8752 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.afa/1418997767 info:eu-repo/semantics/altIdentifier/doi/10.15352/afa/06-2-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Duke University Press |
publisher.none.fl_str_mv |
Duke University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981228989382656 |
score |
12.493442 |