Learning styles' recognition in e-learning environments with feed-forward neural networks
- Autores
- Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.
Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
LEARNING STYLES
NEURAL NETWORKS
WEB-BASED INSTRUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147576
Ver los metadatos del registro completo
id |
CONICETDig_6681e3e2882b07286fd109c38f4dabb3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147576 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning styles' recognition in e-learning environments with feed-forward neural networksVillaverde, Jorge EduardoGodoy, Daniela LisAmandi, Analia AdrianaLEARNING STYLESNEURAL NETWORKSWEB-BASED INSTRUCTIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaBlackwell Publishing2006-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147576Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-2060266-4909CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2729.2006.00169.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:19Zoai:ri.conicet.gov.ar:11336/147576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:19.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
title |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
spellingShingle |
Learning styles' recognition in e-learning environments with feed-forward neural networks Villaverde, Jorge Eduardo LEARNING STYLES NEURAL NETWORKS WEB-BASED INSTRUCTION |
title_short |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
title_full |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
title_fullStr |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
title_full_unstemmed |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
title_sort |
Learning styles' recognition in e-learning environments with feed-forward neural networks |
dc.creator.none.fl_str_mv |
Villaverde, Jorge Eduardo Godoy, Daniela Lis Amandi, Analia Adriana |
author |
Villaverde, Jorge Eduardo |
author_facet |
Villaverde, Jorge Eduardo Godoy, Daniela Lis Amandi, Analia Adriana |
author_role |
author |
author2 |
Godoy, Daniela Lis Amandi, Analia Adriana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LEARNING STYLES NEURAL NETWORKS WEB-BASED INSTRUCTION |
topic |
LEARNING STYLES NEURAL NETWORKS WEB-BASED INSTRUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks. Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-05-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147576 Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-206 0266-4909 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147576 |
identifier_str_mv |
Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-206 0266-4909 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2729.2006.00169.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing |
publisher.none.fl_str_mv |
Blackwell Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270040033853440 |
score |
13.13397 |