Learning styles' recognition in e-learning environments with feed-forward neural networks

Autores
Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.
Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
LEARNING STYLES
NEURAL NETWORKS
WEB-BASED INSTRUCTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/147576

id CONICETDig_6681e3e2882b07286fd109c38f4dabb3
oai_identifier_str oai:ri.conicet.gov.ar:11336/147576
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Learning styles' recognition in e-learning environments with feed-forward neural networksVillaverde, Jorge EduardoGodoy, Daniela LisAmandi, Analia AdrianaLEARNING STYLESNEURAL NETWORKSWEB-BASED INSTRUCTIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaBlackwell Publishing2006-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147576Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-2060266-4909CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2729.2006.00169.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:19Zoai:ri.conicet.gov.ar:11336/147576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:19.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Learning styles' recognition in e-learning environments with feed-forward neural networks
title Learning styles' recognition in e-learning environments with feed-forward neural networks
spellingShingle Learning styles' recognition in e-learning environments with feed-forward neural networks
Villaverde, Jorge Eduardo
LEARNING STYLES
NEURAL NETWORKS
WEB-BASED INSTRUCTION
title_short Learning styles' recognition in e-learning environments with feed-forward neural networks
title_full Learning styles' recognition in e-learning environments with feed-forward neural networks
title_fullStr Learning styles' recognition in e-learning environments with feed-forward neural networks
title_full_unstemmed Learning styles' recognition in e-learning environments with feed-forward neural networks
title_sort Learning styles' recognition in e-learning environments with feed-forward neural networks
dc.creator.none.fl_str_mv Villaverde, Jorge Eduardo
Godoy, Daniela Lis
Amandi, Analia Adriana
author Villaverde, Jorge Eduardo
author_facet Villaverde, Jorge Eduardo
Godoy, Daniela Lis
Amandi, Analia Adriana
author_role author
author2 Godoy, Daniela Lis
Amandi, Analia Adriana
author2_role author
author
dc.subject.none.fl_str_mv LEARNING STYLES
NEURAL NETWORKS
WEB-BASED INSTRUCTION
topic LEARNING STYLES
NEURAL NETWORKS
WEB-BASED INSTRUCTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.
Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.
publishDate 2006
dc.date.none.fl_str_mv 2006-05-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/147576
Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-206
0266-4909
CONICET Digital
CONICET
url http://hdl.handle.net/11336/147576
identifier_str_mv Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-206
0266-4909
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2729.2006.00169.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing
publisher.none.fl_str_mv Blackwell Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270040033853440
score 13.13397