Ladder relations for a class of matrix valued orthogonal polynomials
- Autores
- Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.
Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España. University of Kent; Reino Unido
Fil: Eijsvoogel, Bruno. Katholikie Universiteit Leuven; Bélgica. Radboud Universiteit Nijmegen; Países Bajos
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
INTEGRABLE SYSTEMS
LADDER RELATIONS
MATHEMATICAL PHYSICS
NON–ABELIAN TODA LATTICE
ORTHOGONAL POLYNOMIALS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146515
Ver los metadatos del registro completo
id |
CONICETDig_cfc87dd040fcf52bcabfb12d4406b87d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146515 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ladder relations for a class of matrix valued orthogonal polynomialsDeaño, AlfredoEijsvoogel, BrunoRomán, Pablo ManuelINTEGRABLE SYSTEMSLADDER RELATIONSMATHEMATICAL PHYSICSNON–ABELIAN TODA LATTICEORTHOGONAL POLYNOMIALShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España. University of Kent; Reino UnidoFil: Eijsvoogel, Bruno. Katholikie Universiteit Leuven; Bélgica. Radboud Universiteit Nijmegen; Países BajosFil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaWiley Blackwell Publishing, Inc2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146515Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-4970022-25261467-9590CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12351info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12351info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:44Zoai:ri.conicet.gov.ar:11336/146515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:44.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ladder relations for a class of matrix valued orthogonal polynomials |
title |
Ladder relations for a class of matrix valued orthogonal polynomials |
spellingShingle |
Ladder relations for a class of matrix valued orthogonal polynomials Deaño, Alfredo INTEGRABLE SYSTEMS LADDER RELATIONS MATHEMATICAL PHYSICS NON–ABELIAN TODA LATTICE ORTHOGONAL POLYNOMIALS |
title_short |
Ladder relations for a class of matrix valued orthogonal polynomials |
title_full |
Ladder relations for a class of matrix valued orthogonal polynomials |
title_fullStr |
Ladder relations for a class of matrix valued orthogonal polynomials |
title_full_unstemmed |
Ladder relations for a class of matrix valued orthogonal polynomials |
title_sort |
Ladder relations for a class of matrix valued orthogonal polynomials |
dc.creator.none.fl_str_mv |
Deaño, Alfredo Eijsvoogel, Bruno Román, Pablo Manuel |
author |
Deaño, Alfredo |
author_facet |
Deaño, Alfredo Eijsvoogel, Bruno Román, Pablo Manuel |
author_role |
author |
author2 |
Eijsvoogel, Bruno Román, Pablo Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INTEGRABLE SYSTEMS LADDER RELATIONS MATHEMATICAL PHYSICS NON–ABELIAN TODA LATTICE ORTHOGONAL POLYNOMIALS |
topic |
INTEGRABLE SYSTEMS LADDER RELATIONS MATHEMATICAL PHYSICS NON–ABELIAN TODA LATTICE ORTHOGONAL POLYNOMIALS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix. Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España. University of Kent; Reino Unido Fil: Eijsvoogel, Bruno. Katholikie Universiteit Leuven; Bélgica. Radboud Universiteit Nijmegen; Países Bajos Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146515 Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-497 0022-2526 1467-9590 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146515 |
identifier_str_mv |
Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-497 0022-2526 1467-9590 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12351 info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12351 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614057451061248 |
score |
13.070432 |