Ladder relations for a class of matrix valued orthogonal polynomials

Autores
Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.
Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España. University of Kent; Reino Unido
Fil: Eijsvoogel, Bruno. Katholikie Universiteit Leuven; Bélgica. Radboud Universiteit Nijmegen; Países Bajos
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
INTEGRABLE SYSTEMS
LADDER RELATIONS
MATHEMATICAL PHYSICS
NON–ABELIAN TODA LATTICE
ORTHOGONAL POLYNOMIALS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146515

id CONICETDig_cfc87dd040fcf52bcabfb12d4406b87d
oai_identifier_str oai:ri.conicet.gov.ar:11336/146515
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ladder relations for a class of matrix valued orthogonal polynomialsDeaño, AlfredoEijsvoogel, BrunoRomán, Pablo ManuelINTEGRABLE SYSTEMSLADDER RELATIONSMATHEMATICAL PHYSICSNON–ABELIAN TODA LATTICEORTHOGONAL POLYNOMIALShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España. University of Kent; Reino UnidoFil: Eijsvoogel, Bruno. Katholikie Universiteit Leuven; Bélgica. Radboud Universiteit Nijmegen; Países BajosFil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaWiley Blackwell Publishing, Inc2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146515Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-4970022-25261467-9590CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12351info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12351info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:44Zoai:ri.conicet.gov.ar:11336/146515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:44.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ladder relations for a class of matrix valued orthogonal polynomials
title Ladder relations for a class of matrix valued orthogonal polynomials
spellingShingle Ladder relations for a class of matrix valued orthogonal polynomials
Deaño, Alfredo
INTEGRABLE SYSTEMS
LADDER RELATIONS
MATHEMATICAL PHYSICS
NON–ABELIAN TODA LATTICE
ORTHOGONAL POLYNOMIALS
title_short Ladder relations for a class of matrix valued orthogonal polynomials
title_full Ladder relations for a class of matrix valued orthogonal polynomials
title_fullStr Ladder relations for a class of matrix valued orthogonal polynomials
title_full_unstemmed Ladder relations for a class of matrix valued orthogonal polynomials
title_sort Ladder relations for a class of matrix valued orthogonal polynomials
dc.creator.none.fl_str_mv Deaño, Alfredo
Eijsvoogel, Bruno
Román, Pablo Manuel
author Deaño, Alfredo
author_facet Deaño, Alfredo
Eijsvoogel, Bruno
Román, Pablo Manuel
author_role author
author2 Eijsvoogel, Bruno
Román, Pablo Manuel
author2_role author
author
dc.subject.none.fl_str_mv INTEGRABLE SYSTEMS
LADDER RELATIONS
MATHEMATICAL PHYSICS
NON–ABELIAN TODA LATTICE
ORTHOGONAL POLYNOMIALS
topic INTEGRABLE SYSTEMS
LADDER RELATIONS
MATHEMATICAL PHYSICS
NON–ABELIAN TODA LATTICE
ORTHOGONAL POLYNOMIALS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.
Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España. University of Kent; Reino Unido
Fil: Eijsvoogel, Bruno. Katholikie Universiteit Leuven; Bélgica. Radboud Universiteit Nijmegen; Países Bajos
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.
publishDate 2021
dc.date.none.fl_str_mv 2021-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146515
Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-497
0022-2526
1467-9590
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146515
identifier_str_mv Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-497
0022-2526
1467-9590
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12351
info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12351
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614057451061248
score 13.070432