Asymptotics of matrix valued orthogonal polynomials on [−1,1]
- Autores
- Deaño, Alfredo; Kuijlaars, Arno B. J.; Román, Pablo Manuel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the large degree asymptotic behavior of matrix valued orthogonal polynomials (MVOPs), with a weight that consists of a Jacobi scalar factor and a matrix part. Using the Riemann–Hilbert formulation for MVOPs and the Deift–Zhou method of steepest descent, we obtain asymptotic expansions for the MVOPs as the degree tends to infinity, in different regions of the complex plane (outside the interval of orthogonality, on the interval away from the endpoints and in neighborhoods of the endpoints), as well as for the matrix coefficients in the three-term recurrence relation for these MVOPs. The asymptotic analysis follows the work of Kuijlaars, McLaughlin, Van Assche and Vanlessen on scalar Jacobi-type orthogonal polynomials, but it also requires several different factorizations of the matrix part of the weight, in terms of eigenvalues/eigenvectors and using a matrix Szegő function. We illustrate the results with two main examples, MVOPs of Jacobi and Gegenbauer type, coming from group theory.
Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; Bélgica
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
ASYMPTOTIC ANALYSIS
MATRIX ORTHOGONAL POLYNOMIALS
RIEMANN-HILBERT PROBLEMS
STEEPEST DESCENT METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226119
Ver los metadatos del registro completo
id |
CONICETDig_f974e667055a94f3658fe886f9767cdd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226119 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotics of matrix valued orthogonal polynomials on [−1,1]Deaño, AlfredoKuijlaars, Arno B. J.Román, Pablo ManuelASYMPTOTIC ANALYSISMATRIX ORTHOGONAL POLYNOMIALSRIEMANN-HILBERT PROBLEMSSTEEPEST DESCENT METHODhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze the large degree asymptotic behavior of matrix valued orthogonal polynomials (MVOPs), with a weight that consists of a Jacobi scalar factor and a matrix part. Using the Riemann–Hilbert formulation for MVOPs and the Deift–Zhou method of steepest descent, we obtain asymptotic expansions for the MVOPs as the degree tends to infinity, in different regions of the complex plane (outside the interval of orthogonality, on the interval away from the endpoints and in neighborhoods of the endpoints), as well as for the matrix coefficients in the three-term recurrence relation for these MVOPs. The asymptotic analysis follows the work of Kuijlaars, McLaughlin, Van Assche and Vanlessen on scalar Jacobi-type orthogonal polynomials, but it also requires several different factorizations of the matrix part of the weight, in terms of eigenvalues/eigenvectors and using a matrix Szegő function. We illustrate the results with two main examples, MVOPs of Jacobi and Gegenbauer type, coming from group theory.Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; BélgicaFil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAcademic Press Inc Elsevier Science2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226119Deaño, Alfredo; Kuijlaars, Arno B. J.; Román, Pablo Manuel; Asymptotics of matrix valued orthogonal polynomials on [−1,1]; Academic Press Inc Elsevier Science; Advances in Mathematics; 423; 6-2023; 1-610001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000187082300186Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2023.109043info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:04:33Zoai:ri.conicet.gov.ar:11336/226119instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:04:33.333CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
title |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
spellingShingle |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] Deaño, Alfredo ASYMPTOTIC ANALYSIS MATRIX ORTHOGONAL POLYNOMIALS RIEMANN-HILBERT PROBLEMS STEEPEST DESCENT METHOD |
title_short |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
title_full |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
title_fullStr |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
title_full_unstemmed |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
title_sort |
Asymptotics of matrix valued orthogonal polynomials on [−1,1] |
dc.creator.none.fl_str_mv |
Deaño, Alfredo Kuijlaars, Arno B. J. Román, Pablo Manuel |
author |
Deaño, Alfredo |
author_facet |
Deaño, Alfredo Kuijlaars, Arno B. J. Román, Pablo Manuel |
author_role |
author |
author2 |
Kuijlaars, Arno B. J. Román, Pablo Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ASYMPTOTIC ANALYSIS MATRIX ORTHOGONAL POLYNOMIALS RIEMANN-HILBERT PROBLEMS STEEPEST DESCENT METHOD |
topic |
ASYMPTOTIC ANALYSIS MATRIX ORTHOGONAL POLYNOMIALS RIEMANN-HILBERT PROBLEMS STEEPEST DESCENT METHOD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze the large degree asymptotic behavior of matrix valued orthogonal polynomials (MVOPs), with a weight that consists of a Jacobi scalar factor and a matrix part. Using the Riemann–Hilbert formulation for MVOPs and the Deift–Zhou method of steepest descent, we obtain asymptotic expansions for the MVOPs as the degree tends to infinity, in different regions of the complex plane (outside the interval of orthogonality, on the interval away from the endpoints and in neighborhoods of the endpoints), as well as for the matrix coefficients in the three-term recurrence relation for these MVOPs. The asymptotic analysis follows the work of Kuijlaars, McLaughlin, Van Assche and Vanlessen on scalar Jacobi-type orthogonal polynomials, but it also requires several different factorizations of the matrix part of the weight, in terms of eigenvalues/eigenvectors and using a matrix Szegő function. We illustrate the results with two main examples, MVOPs of Jacobi and Gegenbauer type, coming from group theory. Fil: Deaño, Alfredo. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; Bélgica Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We analyze the large degree asymptotic behavior of matrix valued orthogonal polynomials (MVOPs), with a weight that consists of a Jacobi scalar factor and a matrix part. Using the Riemann–Hilbert formulation for MVOPs and the Deift–Zhou method of steepest descent, we obtain asymptotic expansions for the MVOPs as the degree tends to infinity, in different regions of the complex plane (outside the interval of orthogonality, on the interval away from the endpoints and in neighborhoods of the endpoints), as well as for the matrix coefficients in the three-term recurrence relation for these MVOPs. The asymptotic analysis follows the work of Kuijlaars, McLaughlin, Van Assche and Vanlessen on scalar Jacobi-type orthogonal polynomials, but it also requires several different factorizations of the matrix part of the weight, in terms of eigenvalues/eigenvectors and using a matrix Szegő function. We illustrate the results with two main examples, MVOPs of Jacobi and Gegenbauer type, coming from group theory. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226119 Deaño, Alfredo; Kuijlaars, Arno B. J.; Román, Pablo Manuel; Asymptotics of matrix valued orthogonal polynomials on [−1,1]; Academic Press Inc Elsevier Science; Advances in Mathematics; 423; 6-2023; 1-61 0001-8708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226119 |
identifier_str_mv |
Deaño, Alfredo; Kuijlaars, Arno B. J.; Román, Pablo Manuel; Asymptotics of matrix valued orthogonal polynomials on [−1,1]; Academic Press Inc Elsevier Science; Advances in Mathematics; 423; 6-2023; 1-61 0001-8708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000187082300186X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2023.109043 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083188595621888 |
score |
13.22299 |