Microbiological culture broth designed from food waste
- Autores
- Chalon, Miriam Carolina; Terán, Victoria; Arena, Mario Eduardo; Oliszewky, Ruben; Gonzalez, Silvia Nelina
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The current trend of increasing air, water, and soil pollution is, in part, due to inadequate management of municipal solid waste (MSW). The relationship between public health and the collection, storage and improper disposal of solid waste has encouraged several studies and the results were attributed to the spread of over twenty human and animal diseases due to this interrelationship. The term single cell protein (SCP) refers to microbial biomass used as a dietary additive. It has high nutritional value because of its high content of vitamins, lipids, and proteins of biological quality (the presence of all essential amino acids) (Lal, 2005). The aim of this work was to design a culture media for microbiological assays and to produce SCP for animal feeding, using nutrients contained in organic waste. In order to compare the effectiveness of food waste (FW) and LAPTg media, different strains of Lactobacillus, Enterococcus, Staphylococcus, Shigella, Salmonella, Saccharomyces and Schizosaccharomyces were studied. In all cases, the growth obtained from FW and LAPTg culture media were not significantly different (p > 0.05). In addition, the growth of Saccharomyces cerevisiae was studied in order to produce SCP for animal feeding. Comparative experiments involving molasses broth, FW broth, and basal broth were carried out. The biomass yield calculated at 24 h from FW broth was 13% lower than from molasses broth. The FW broth provided a significantly lower biomass yield; however, it can be very useful in areas where molasses are not available. FW broth can be elaborated at low cost, in any populated region of the world because its ingredients are wastes generated by humans. It has great versatility, allowing the development of a wide variety of microorganisms, both Gram negative and Gram positive bacteria as well as yeasts. The production of safe protein additives, with high biological quality and low cost, is necessary due to the increasing global demand for food for humans and animals.
Fil: Chalon, Miriam Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Terán, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); Argentina
Fil: Arena, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina
Fil: Oliszewky, Ruben. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Gonzalez, Silvia Nelina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina - Materia
-
Food Waste Broth
Single Cell Proteins
Bacterial Growth
Microbial Biotechnology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6937
Ver los metadatos del registro completo
id |
CONICETDig_ce6a3241da383ff501206951b08312c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6937 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Microbiological culture broth designed from food wasteChalon, Miriam CarolinaTerán, VictoriaArena, Mario EduardoOliszewky, RubenGonzalez, Silvia NelinaFood Waste BrothSingle Cell ProteinsBacterial GrowthMicrobial Biotechnologyhttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2The current trend of increasing air, water, and soil pollution is, in part, due to inadequate management of municipal solid waste (MSW). The relationship between public health and the collection, storage and improper disposal of solid waste has encouraged several studies and the results were attributed to the spread of over twenty human and animal diseases due to this interrelationship. The term single cell protein (SCP) refers to microbial biomass used as a dietary additive. It has high nutritional value because of its high content of vitamins, lipids, and proteins of biological quality (the presence of all essential amino acids) (Lal, 2005). The aim of this work was to design a culture media for microbiological assays and to produce SCP for animal feeding, using nutrients contained in organic waste. In order to compare the effectiveness of food waste (FW) and LAPTg media, different strains of Lactobacillus, Enterococcus, Staphylococcus, Shigella, Salmonella, Saccharomyces and Schizosaccharomyces were studied. In all cases, the growth obtained from FW and LAPTg culture media were not significantly different (p > 0.05). In addition, the growth of Saccharomyces cerevisiae was studied in order to produce SCP for animal feeding. Comparative experiments involving molasses broth, FW broth, and basal broth were carried out. The biomass yield calculated at 24 h from FW broth was 13% lower than from molasses broth. The FW broth provided a significantly lower biomass yield; however, it can be very useful in areas where molasses are not available. FW broth can be elaborated at low cost, in any populated region of the world because its ingredients are wastes generated by humans. It has great versatility, allowing the development of a wide variety of microorganisms, both Gram negative and Gram positive bacteria as well as yeasts. The production of safe protein additives, with high biological quality and low cost, is necessary due to the increasing global demand for food for humans and animals.Fil: Chalon, Miriam Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Terán, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); ArgentinaFil: Arena, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; ArgentinaFil: Oliszewky, Ruben. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Gonzalez, Silvia Nelina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6937Chalon, Miriam Carolina; Terán, Victoria; Arena, Mario Eduardo; Oliszewky, Ruben; Gonzalez, Silvia Nelina; Microbiological culture broth designed from food waste; Elsevier; Journal of Environmental Management; 115; 3-2013; 1-40301-4797enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2012.10.005info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/pmid/23220651info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0301479712005099info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:59Zoai:ri.conicet.gov.ar:11336/6937instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:59.482CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Microbiological culture broth designed from food waste |
title |
Microbiological culture broth designed from food waste |
spellingShingle |
Microbiological culture broth designed from food waste Chalon, Miriam Carolina Food Waste Broth Single Cell Proteins Bacterial Growth Microbial Biotechnology |
title_short |
Microbiological culture broth designed from food waste |
title_full |
Microbiological culture broth designed from food waste |
title_fullStr |
Microbiological culture broth designed from food waste |
title_full_unstemmed |
Microbiological culture broth designed from food waste |
title_sort |
Microbiological culture broth designed from food waste |
dc.creator.none.fl_str_mv |
Chalon, Miriam Carolina Terán, Victoria Arena, Mario Eduardo Oliszewky, Ruben Gonzalez, Silvia Nelina |
author |
Chalon, Miriam Carolina |
author_facet |
Chalon, Miriam Carolina Terán, Victoria Arena, Mario Eduardo Oliszewky, Ruben Gonzalez, Silvia Nelina |
author_role |
author |
author2 |
Terán, Victoria Arena, Mario Eduardo Oliszewky, Ruben Gonzalez, Silvia Nelina |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Food Waste Broth Single Cell Proteins Bacterial Growth Microbial Biotechnology |
topic |
Food Waste Broth Single Cell Proteins Bacterial Growth Microbial Biotechnology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The current trend of increasing air, water, and soil pollution is, in part, due to inadequate management of municipal solid waste (MSW). The relationship between public health and the collection, storage and improper disposal of solid waste has encouraged several studies and the results were attributed to the spread of over twenty human and animal diseases due to this interrelationship. The term single cell protein (SCP) refers to microbial biomass used as a dietary additive. It has high nutritional value because of its high content of vitamins, lipids, and proteins of biological quality (the presence of all essential amino acids) (Lal, 2005). The aim of this work was to design a culture media for microbiological assays and to produce SCP for animal feeding, using nutrients contained in organic waste. In order to compare the effectiveness of food waste (FW) and LAPTg media, different strains of Lactobacillus, Enterococcus, Staphylococcus, Shigella, Salmonella, Saccharomyces and Schizosaccharomyces were studied. In all cases, the growth obtained from FW and LAPTg culture media were not significantly different (p > 0.05). In addition, the growth of Saccharomyces cerevisiae was studied in order to produce SCP for animal feeding. Comparative experiments involving molasses broth, FW broth, and basal broth were carried out. The biomass yield calculated at 24 h from FW broth was 13% lower than from molasses broth. The FW broth provided a significantly lower biomass yield; however, it can be very useful in areas where molasses are not available. FW broth can be elaborated at low cost, in any populated region of the world because its ingredients are wastes generated by humans. It has great versatility, allowing the development of a wide variety of microorganisms, both Gram negative and Gram positive bacteria as well as yeasts. The production of safe protein additives, with high biological quality and low cost, is necessary due to the increasing global demand for food for humans and animals. Fil: Chalon, Miriam Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina Fil: Terán, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); Argentina Fil: Arena, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina Fil: Oliszewky, Ruben. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina Fil: Gonzalez, Silvia Nelina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina |
description |
The current trend of increasing air, water, and soil pollution is, in part, due to inadequate management of municipal solid waste (MSW). The relationship between public health and the collection, storage and improper disposal of solid waste has encouraged several studies and the results were attributed to the spread of over twenty human and animal diseases due to this interrelationship. The term single cell protein (SCP) refers to microbial biomass used as a dietary additive. It has high nutritional value because of its high content of vitamins, lipids, and proteins of biological quality (the presence of all essential amino acids) (Lal, 2005). The aim of this work was to design a culture media for microbiological assays and to produce SCP for animal feeding, using nutrients contained in organic waste. In order to compare the effectiveness of food waste (FW) and LAPTg media, different strains of Lactobacillus, Enterococcus, Staphylococcus, Shigella, Salmonella, Saccharomyces and Schizosaccharomyces were studied. In all cases, the growth obtained from FW and LAPTg culture media were not significantly different (p > 0.05). In addition, the growth of Saccharomyces cerevisiae was studied in order to produce SCP for animal feeding. Comparative experiments involving molasses broth, FW broth, and basal broth were carried out. The biomass yield calculated at 24 h from FW broth was 13% lower than from molasses broth. The FW broth provided a significantly lower biomass yield; however, it can be very useful in areas where molasses are not available. FW broth can be elaborated at low cost, in any populated region of the world because its ingredients are wastes generated by humans. It has great versatility, allowing the development of a wide variety of microorganisms, both Gram negative and Gram positive bacteria as well as yeasts. The production of safe protein additives, with high biological quality and low cost, is necessary due to the increasing global demand for food for humans and animals. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6937 Chalon, Miriam Carolina; Terán, Victoria; Arena, Mario Eduardo; Oliszewky, Ruben; Gonzalez, Silvia Nelina; Microbiological culture broth designed from food waste; Elsevier; Journal of Environmental Management; 115; 3-2013; 1-4 0301-4797 |
url |
http://hdl.handle.net/11336/6937 |
identifier_str_mv |
Chalon, Miriam Carolina; Terán, Victoria; Arena, Mario Eduardo; Oliszewky, Ruben; Gonzalez, Silvia Nelina; Microbiological culture broth designed from food waste; Elsevier; Journal of Environmental Management; 115; 3-2013; 1-4 0301-4797 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2012.10.005 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/pmid/23220651 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0301479712005099 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614271489540096 |
score |
13.070432 |