Distributive nearlattices with a necessity modal operator

Autores
Celani, Sergio Arturo; Calomino, Ismael Maria
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this paper is to study the class of distributive nearlattices with a necessity modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms are applications that preserving the infimum when exists and, as special case, we obtain a representation and duality for distributive nearlattices with a necessity modal operator. We study certain particular subclasses and give some applications.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Materia
PRIMARY 06A12
06D35
SECONDARY 03G10
06D50
DISTRIBUTIVE NEARLATTICE
TOPOLOGICAL REPRESENTATION
DUALITY
MODAL OPERATOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/119044

id CONICETDig_ce07433386d3717e9485e5204adf15ac
oai_identifier_str oai:ri.conicet.gov.ar:11336/119044
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Distributive nearlattices with a necessity modal operatorCelani, Sergio ArturoCalomino, Ismael MariaPRIMARY 06A1206D35SECONDARY 03G1006D50DISTRIBUTIVE NEARLATTICETOPOLOGICAL REPRESENTATIONDUALITYMODAL OPERATORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to study the class of distributive nearlattices with a necessity modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms are applications that preserving the infimum when exists and, as special case, we obtain a representation and duality for distributive nearlattices with a necessity modal operator. We study certain particular subclasses and give some applications.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaMathematical Institute Slovak Academy of Sciences2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119044Celani, Sergio Arturo; Calomino, Ismael Maria; Distributive nearlattices with a necessity modal operator; Mathematical Institute Slovak Academy of Sciences; Mathematica Slovaca; 69; 1; 1-2019; 35-520139-99181337-2211CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ms.2019.69.issue-1/ms-2017-0201/ms-2017-0201.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/ms-2017-0201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:35Zoai:ri.conicet.gov.ar:11336/119044instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:35.271CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Distributive nearlattices with a necessity modal operator
title Distributive nearlattices with a necessity modal operator
spellingShingle Distributive nearlattices with a necessity modal operator
Celani, Sergio Arturo
PRIMARY 06A12
06D35
SECONDARY 03G10
06D50
DISTRIBUTIVE NEARLATTICE
TOPOLOGICAL REPRESENTATION
DUALITY
MODAL OPERATOR
title_short Distributive nearlattices with a necessity modal operator
title_full Distributive nearlattices with a necessity modal operator
title_fullStr Distributive nearlattices with a necessity modal operator
title_full_unstemmed Distributive nearlattices with a necessity modal operator
title_sort Distributive nearlattices with a necessity modal operator
dc.creator.none.fl_str_mv Celani, Sergio Arturo
Calomino, Ismael Maria
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
Calomino, Ismael Maria
author_role author
author2 Calomino, Ismael Maria
author2_role author
dc.subject.none.fl_str_mv PRIMARY 06A12
06D35
SECONDARY 03G10
06D50
DISTRIBUTIVE NEARLATTICE
TOPOLOGICAL REPRESENTATION
DUALITY
MODAL OPERATOR
topic PRIMARY 06A12
06D35
SECONDARY 03G10
06D50
DISTRIBUTIVE NEARLATTICE
TOPOLOGICAL REPRESENTATION
DUALITY
MODAL OPERATOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this paper is to study the class of distributive nearlattices with a necessity modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms are applications that preserving the infimum when exists and, as special case, we obtain a representation and duality for distributive nearlattices with a necessity modal operator. We study certain particular subclasses and give some applications.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
description The aim of this paper is to study the class of distributive nearlattices with a necessity modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms are applications that preserving the infimum when exists and, as special case, we obtain a representation and duality for distributive nearlattices with a necessity modal operator. We study certain particular subclasses and give some applications.
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/119044
Celani, Sergio Arturo; Calomino, Ismael Maria; Distributive nearlattices with a necessity modal operator; Mathematical Institute Slovak Academy of Sciences; Mathematica Slovaca; 69; 1; 1-2019; 35-52
0139-9918
1337-2211
CONICET Digital
CONICET
url http://hdl.handle.net/11336/119044
identifier_str_mv Celani, Sergio Arturo; Calomino, Ismael Maria; Distributive nearlattices with a necessity modal operator; Mathematical Institute Slovak Academy of Sciences; Mathematica Slovaca; 69; 1; 1-2019; 35-52
0139-9918
1337-2211
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ms.2019.69.issue-1/ms-2017-0201/ms-2017-0201.xml
info:eu-repo/semantics/altIdentifier/doi/10.1515/ms-2017-0201
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Institute Slovak Academy of Sciences
publisher.none.fl_str_mv Mathematical Institute Slovak Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268803866558464
score 13.13397