Stone style duality for distributive nearlattices

Autores
Celani, Sergio Arturo; Calomino, Ismael Maria
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Distributive Nearlattices
Prime Ideal
Topological Representation
Stone Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33345

id CONICETDig_5f43d89342453a70fa7960d534e889a1
oai_identifier_str oai:ri.conicet.gov.ar:11336/33345
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stone style duality for distributive nearlatticesCelani, Sergio ArturoCalomino, Ismael MariaDistributive NearlatticesPrime IdealTopological RepresentationStone Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33345Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-1530002-52401420-8911CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-014-0269-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00012-014-0269-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:16Zoai:ri.conicet.gov.ar:11336/33345instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:16.615CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stone style duality for distributive nearlattices
title Stone style duality for distributive nearlattices
spellingShingle Stone style duality for distributive nearlattices
Celani, Sergio Arturo
Distributive Nearlattices
Prime Ideal
Topological Representation
Stone Spaces
title_short Stone style duality for distributive nearlattices
title_full Stone style duality for distributive nearlattices
title_fullStr Stone style duality for distributive nearlattices
title_full_unstemmed Stone style duality for distributive nearlattices
title_sort Stone style duality for distributive nearlattices
dc.creator.none.fl_str_mv Celani, Sergio Arturo
Calomino, Ismael Maria
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
Calomino, Ismael Maria
author_role author
author2 Calomino, Ismael Maria
author2_role author
dc.subject.none.fl_str_mv Distributive Nearlattices
Prime Ideal
Topological Representation
Stone Spaces
topic Distributive Nearlattices
Prime Ideal
Topological Representation
Stone Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33345
Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-153
0002-5240
1420-8911
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33345
identifier_str_mv Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-153
0002-5240
1420-8911
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-014-0269-0
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00012-014-0269-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269275867316224
score 13.13397