Stone style duality for distributive nearlattices
- Autores
- Celani, Sergio Arturo; Calomino, Ismael Maria
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Distributive Nearlattices
Prime Ideal
Topological Representation
Stone Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33345
Ver los metadatos del registro completo
id |
CONICETDig_5f43d89342453a70fa7960d534e889a1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33345 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stone style duality for distributive nearlatticesCelani, Sergio ArturoCalomino, Ismael MariaDistributive NearlatticesPrime IdealTopological RepresentationStone Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33345Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-1530002-52401420-8911CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-014-0269-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00012-014-0269-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:16Zoai:ri.conicet.gov.ar:11336/33345instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:16.615CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stone style duality for distributive nearlattices |
title |
Stone style duality for distributive nearlattices |
spellingShingle |
Stone style duality for distributive nearlattices Celani, Sergio Arturo Distributive Nearlattices Prime Ideal Topological Representation Stone Spaces |
title_short |
Stone style duality for distributive nearlattices |
title_full |
Stone style duality for distributive nearlattices |
title_fullStr |
Stone style duality for distributive nearlattices |
title_full_unstemmed |
Stone style duality for distributive nearlattices |
title_sort |
Stone style duality for distributive nearlattices |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo Calomino, Ismael Maria |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo Calomino, Ismael Maria |
author_role |
author |
author2 |
Calomino, Ismael Maria |
author2_role |
author |
dc.subject.none.fl_str_mv |
Distributive Nearlattices Prime Ideal Topological Representation Stone Spaces |
topic |
Distributive Nearlattices Prime Ideal Topological Representation Stone Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Calomino, Ismael Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33345 Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-153 0002-5240 1420-8911 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33345 |
identifier_str_mv |
Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-153 0002-5240 1420-8911 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-014-0269-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00012-014-0269-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269275867316224 |
score |
13.13397 |