Hilbert algebras with a necessity modal operator
- Autores
- Celani, Sergio Arturo; Montangie, Daniela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montangie, Daniela. Universidad Nacional del Comahue. Facultad de Economía y Administración; Argentina - Materia
-
Hilbert Algebras
Modal Operator
Topological Duality
Subvarieties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33288
Ver los metadatos del registro completo
id |
CONICETDig_98a93c2711e7bd5f239ed6eb5289694b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33288 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hilbert algebras with a necessity modal operatorCelani, Sergio ArturoMontangie, DanielaHilbert AlgebrasModal OperatorTopological DualitySubvarietieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montangie, Daniela. Universidad Nacional del Comahue. Facultad de Economía y Administración; ArgentinaJagiellonian University2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33288Celani, Sergio Arturo; Montangie, Daniela; Hilbert algebras with a necessity modal operator; Jagiellonian University; Reports on Mathematical Logic; 49; 10-2014; 47-770137-29042084-2589CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ejournals.eu/rml/2014/Numer-49/art/3577/info:eu-repo/semantics/altIdentifier/doi/10.4467/20842589RM.14.004.2274info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:38Zoai:ri.conicet.gov.ar:11336/33288instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:38.49CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hilbert algebras with a necessity modal operator |
title |
Hilbert algebras with a necessity modal operator |
spellingShingle |
Hilbert algebras with a necessity modal operator Celani, Sergio Arturo Hilbert Algebras Modal Operator Topological Duality Subvarieties |
title_short |
Hilbert algebras with a necessity modal operator |
title_full |
Hilbert algebras with a necessity modal operator |
title_fullStr |
Hilbert algebras with a necessity modal operator |
title_full_unstemmed |
Hilbert algebras with a necessity modal operator |
title_sort |
Hilbert algebras with a necessity modal operator |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo Montangie, Daniela |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo Montangie, Daniela |
author_role |
author |
author2 |
Montangie, Daniela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hilbert Algebras Modal Operator Topological Duality Subvarieties |
topic |
Hilbert Algebras Modal Operator Topological Duality Subvarieties |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Montangie, Daniela. Universidad Nacional del Comahue. Facultad de Economía y Administración; Argentina |
description |
We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33288 Celani, Sergio Arturo; Montangie, Daniela; Hilbert algebras with a necessity modal operator; Jagiellonian University; Reports on Mathematical Logic; 49; 10-2014; 47-77 0137-2904 2084-2589 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33288 |
identifier_str_mv |
Celani, Sergio Arturo; Montangie, Daniela; Hilbert algebras with a necessity modal operator; Jagiellonian University; Reports on Mathematical Logic; 49; 10-2014; 47-77 0137-2904 2084-2589 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ejournals.eu/rml/2014/Numer-49/art/3577/ info:eu-repo/semantics/altIdentifier/doi/10.4467/20842589RM.14.004.2274 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Jagiellonian University |
publisher.none.fl_str_mv |
Jagiellonian University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269414328631296 |
score |
13.13397 |