Hilbert algebras with a necessity modal operator

Autores
Celani, Sergio Arturo; Montangie, Daniela
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montangie, Daniela. Universidad Nacional del Comahue. Facultad de Economía y Administración; Argentina
Materia
Hilbert Algebras
Modal Operator
Topological Duality
Subvarieties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33288

id CONICETDig_98a93c2711e7bd5f239ed6eb5289694b
oai_identifier_str oai:ri.conicet.gov.ar:11336/33288
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hilbert algebras with a necessity modal operatorCelani, Sergio ArturoMontangie, DanielaHilbert AlgebrasModal OperatorTopological DualitySubvarietieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montangie, Daniela. Universidad Nacional del Comahue. Facultad de Economía y Administración; ArgentinaJagiellonian University2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33288Celani, Sergio Arturo; Montangie, Daniela; Hilbert algebras with a necessity modal operator; Jagiellonian University; Reports on Mathematical Logic; 49; 10-2014; 47-770137-29042084-2589CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ejournals.eu/rml/2014/Numer-49/art/3577/info:eu-repo/semantics/altIdentifier/doi/10.4467/20842589RM.14.004.2274info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:38Zoai:ri.conicet.gov.ar:11336/33288instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:38.49CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hilbert algebras with a necessity modal operator
title Hilbert algebras with a necessity modal operator
spellingShingle Hilbert algebras with a necessity modal operator
Celani, Sergio Arturo
Hilbert Algebras
Modal Operator
Topological Duality
Subvarieties
title_short Hilbert algebras with a necessity modal operator
title_full Hilbert algebras with a necessity modal operator
title_fullStr Hilbert algebras with a necessity modal operator
title_full_unstemmed Hilbert algebras with a necessity modal operator
title_sort Hilbert algebras with a necessity modal operator
dc.creator.none.fl_str_mv Celani, Sergio Arturo
Montangie, Daniela
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
Montangie, Daniela
author_role author
author2 Montangie, Daniela
author2_role author
dc.subject.none.fl_str_mv Hilbert Algebras
Modal Operator
Topological Duality
Subvarieties
topic Hilbert Algebras
Modal Operator
Topological Duality
Subvarieties
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montangie, Daniela. Universidad Nacional del Comahue. Facultad de Economía y Administración; Argentina
description We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variety of H -algebras is the algebraic counterpart of the f!; g-fragment of the intuitionitic modal logic IntK . We will study the theory of representation and we will give a topological duality for the variety of H -algebras. We are going to use these results to prove that the basic implicative modal logic IntK! and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H -algebras.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33288
Celani, Sergio Arturo; Montangie, Daniela; Hilbert algebras with a necessity modal operator; Jagiellonian University; Reports on Mathematical Logic; 49; 10-2014; 47-77
0137-2904
2084-2589
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33288
identifier_str_mv Celani, Sergio Arturo; Montangie, Daniela; Hilbert algebras with a necessity modal operator; Jagiellonian University; Reports on Mathematical Logic; 49; 10-2014; 47-77
0137-2904
2084-2589
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ejournals.eu/rml/2014/Numer-49/art/3577/
info:eu-repo/semantics/altIdentifier/doi/10.4467/20842589RM.14.004.2274
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Jagiellonian University
publisher.none.fl_str_mv Jagiellonian University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269414328631296
score 13.13397