Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle
- Autores
- Perez, Laura Virginia; de Angelo, Cristian Hernan; Pereyra, Víctor
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To minimize the fuel consumption in hybrid electric vehicles, it is necessary to define a strategy for the management of the power flows within the vehicle. Under the assumption that the velocity to be developed by the vehicle is known a priori, this problem may be posed as a nonlinear optimal control problem with control and state constraints. We find the solution to this problem using the optimality conditions given by the Pontryagin Maximum Principle. This leads to boundary value problems that we solve using a software tool named PASVA4. On real time operation, the velocity to be developed by the vehicle is not known in advance. We show how the adjoint state obtained from the former problem may be used as a weighing factor, called ‘‘equivalent consumption’’. This weighing factor may be used to design suboptimal real time algorithms for power management.
Fil: Perez, Laura Virginia. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Angelo, Cristian Hernan. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pereyra, Víctor. San Diego State University; Estados Unidos - Materia
-
Non linear constrained optimal control
Pontryagin Maximum Principle
Boundary value problems solvers
Hybrid electric vehicles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23321
Ver los metadatos del registro completo
id |
CONICETDig_99d4c1c6115fc1943c0f5e50912c1336 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23321 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehiclePerez, Laura Virginiade Angelo, Cristian HernanPereyra, VíctorNon linear constrained optimal controlPontryagin Maximum PrincipleBoundary value problems solversHybrid electric vehicleshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2To minimize the fuel consumption in hybrid electric vehicles, it is necessary to define a strategy for the management of the power flows within the vehicle. Under the assumption that the velocity to be developed by the vehicle is known a priori, this problem may be posed as a nonlinear optimal control problem with control and state constraints. We find the solution to this problem using the optimality conditions given by the Pontryagin Maximum Principle. This leads to boundary value problems that we solve using a software tool named PASVA4. On real time operation, the velocity to be developed by the vehicle is not known in advance. We show how the adjoint state obtained from the former problem may be used as a weighing factor, called ‘‘equivalent consumption’’. This weighing factor may be used to design suboptimal real time algorithms for power management.Fil: Perez, Laura Virginia. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Angelo, Cristian Hernan. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pereyra, Víctor. San Diego State University; Estados UnidosElsevier2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23321Perez, Laura Virginia; de Angelo, Cristian Hernan; Pereyra, Víctor; Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle; Elsevier; Mathematical And Computer Modelling; 57; 9-10; 7-2011; 2257-22660895-7177CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.mcm.2011.06.058info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0895717711003992info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:34Zoai:ri.conicet.gov.ar:11336/23321instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:34.978CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
title |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
spellingShingle |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle Perez, Laura Virginia Non linear constrained optimal control Pontryagin Maximum Principle Boundary value problems solvers Hybrid electric vehicles |
title_short |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
title_full |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
title_fullStr |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
title_full_unstemmed |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
title_sort |
Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle |
dc.creator.none.fl_str_mv |
Perez, Laura Virginia de Angelo, Cristian Hernan Pereyra, Víctor |
author |
Perez, Laura Virginia |
author_facet |
Perez, Laura Virginia de Angelo, Cristian Hernan Pereyra, Víctor |
author_role |
author |
author2 |
de Angelo, Cristian Hernan Pereyra, Víctor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Non linear constrained optimal control Pontryagin Maximum Principle Boundary value problems solvers Hybrid electric vehicles |
topic |
Non linear constrained optimal control Pontryagin Maximum Principle Boundary value problems solvers Hybrid electric vehicles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
To minimize the fuel consumption in hybrid electric vehicles, it is necessary to define a strategy for the management of the power flows within the vehicle. Under the assumption that the velocity to be developed by the vehicle is known a priori, this problem may be posed as a nonlinear optimal control problem with control and state constraints. We find the solution to this problem using the optimality conditions given by the Pontryagin Maximum Principle. This leads to boundary value problems that we solve using a software tool named PASVA4. On real time operation, the velocity to be developed by the vehicle is not known in advance. We show how the adjoint state obtained from the former problem may be used as a weighing factor, called ‘‘equivalent consumption’’. This weighing factor may be used to design suboptimal real time algorithms for power management. Fil: Perez, Laura Virginia. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Angelo, Cristian Hernan. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pereyra, Víctor. San Diego State University; Estados Unidos |
description |
To minimize the fuel consumption in hybrid electric vehicles, it is necessary to define a strategy for the management of the power flows within the vehicle. Under the assumption that the velocity to be developed by the vehicle is known a priori, this problem may be posed as a nonlinear optimal control problem with control and state constraints. We find the solution to this problem using the optimality conditions given by the Pontryagin Maximum Principle. This leads to boundary value problems that we solve using a software tool named PASVA4. On real time operation, the velocity to be developed by the vehicle is not known in advance. We show how the adjoint state obtained from the former problem may be used as a weighing factor, called ‘‘equivalent consumption’’. This weighing factor may be used to design suboptimal real time algorithms for power management. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23321 Perez, Laura Virginia; de Angelo, Cristian Hernan; Pereyra, Víctor; Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle; Elsevier; Mathematical And Computer Modelling; 57; 9-10; 7-2011; 2257-2266 0895-7177 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23321 |
identifier_str_mv |
Perez, Laura Virginia; de Angelo, Cristian Hernan; Pereyra, Víctor; Determination of the adjoint state evolution for the efficient operation of a hybrid electric vehicle; Elsevier; Mathematical And Computer Modelling; 57; 9-10; 7-2011; 2257-2266 0895-7177 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mcm.2011.06.058 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0895717711003992 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268981216411648 |
score |
13.13397 |