Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification

Autores
Feidl, Fabian; Garbellini, Simone; Luna, Martín Francisco; Vogg, Sebastian; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo; Butté, Alessandro
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Chromatography is widely used in biotherapeutics manufacturing, and the corresponding underlying mechanisms are well understood. To enable process control and automation, spectroscopic techniques are very convenient as on-line sensors, but their application is often limited by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer harvest. A state estimation procedure is developed by combining information coming from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF). A comparison with suitable experimental data shows that this approach allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and increased robustness.
Fil: Feidl, Fabian. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Garbellini, Simone. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Luna, Martín Francisco. Eidgenossische Technische Hochschule zurich (eth Zurich); . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vogg, Sebastian. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Souquet, Jonathan. Merck Serono International S.A.; Suiza
Fil: Broly, Hervé. Merck Serono International S.A.; Suiza
Fil: Morbidelli, Massimo. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Butté, Alessandro. Eidgenossische Technische Hochschule zurich (eth Zurich);
Materia
CHROMATOGRAPHY
DOWNSTREAM PROCESSING
EXTENDED KALMAN FILTER
FLOW CELL
RAMAN SPECTROSCOPY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180965

id CONICETDig_cda29acfba21f90668337ca535c1533e
oai_identifier_str oai:ri.conicet.gov.ar:11336/180965
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purificationFeidl, FabianGarbellini, SimoneLuna, Martín FranciscoVogg, SebastianSouquet, JonathanBroly, HervéMorbidelli, MassimoButté, AlessandroCHROMATOGRAPHYDOWNSTREAM PROCESSINGEXTENDED KALMAN FILTERFLOW CELLRAMAN SPECTROSCOPYhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Chromatography is widely used in biotherapeutics manufacturing, and the corresponding underlying mechanisms are well understood. To enable process control and automation, spectroscopic techniques are very convenient as on-line sensors, but their application is often limited by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer harvest. A state estimation procedure is developed by combining information coming from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF). A comparison with suitable experimental data shows that this approach allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and increased robustness.Fil: Feidl, Fabian. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Garbellini, Simone. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Luna, Martín Francisco. Eidgenossische Technische Hochschule zurich (eth Zurich); . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vogg, Sebastian. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Souquet, Jonathan. Merck Serono International S.A.; SuizaFil: Broly, Hervé. Merck Serono International S.A.; SuizaFil: Morbidelli, Massimo. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Butté, Alessandro. Eidgenossische Technische Hochschule zurich (eth Zurich);MDPI AG2019-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180965Feidl, Fabian; Garbellini, Simone; Luna, Martín Francisco; Vogg, Sebastian; Souquet, Jonathan; et al.; Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification; MDPI AG; Processes; 7; 10; 1-10-2019; 1-162227-9717CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/pr7100683info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/7/10/683info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:46:16Zoai:ri.conicet.gov.ar:11336/180965instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:46:16.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
title Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
spellingShingle Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
Feidl, Fabian
CHROMATOGRAPHY
DOWNSTREAM PROCESSING
EXTENDED KALMAN FILTER
FLOW CELL
RAMAN SPECTROSCOPY
title_short Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
title_full Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
title_fullStr Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
title_full_unstemmed Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
title_sort Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification
dc.creator.none.fl_str_mv Feidl, Fabian
Garbellini, Simone
Luna, Martín Francisco
Vogg, Sebastian
Souquet, Jonathan
Broly, Hervé
Morbidelli, Massimo
Butté, Alessandro
author Feidl, Fabian
author_facet Feidl, Fabian
Garbellini, Simone
Luna, Martín Francisco
Vogg, Sebastian
Souquet, Jonathan
Broly, Hervé
Morbidelli, Massimo
Butté, Alessandro
author_role author
author2 Garbellini, Simone
Luna, Martín Francisco
Vogg, Sebastian
Souquet, Jonathan
Broly, Hervé
Morbidelli, Massimo
Butté, Alessandro
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CHROMATOGRAPHY
DOWNSTREAM PROCESSING
EXTENDED KALMAN FILTER
FLOW CELL
RAMAN SPECTROSCOPY
topic CHROMATOGRAPHY
DOWNSTREAM PROCESSING
EXTENDED KALMAN FILTER
FLOW CELL
RAMAN SPECTROSCOPY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Chromatography is widely used in biotherapeutics manufacturing, and the corresponding underlying mechanisms are well understood. To enable process control and automation, spectroscopic techniques are very convenient as on-line sensors, but their application is often limited by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer harvest. A state estimation procedure is developed by combining information coming from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF). A comparison with suitable experimental data shows that this approach allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and increased robustness.
Fil: Feidl, Fabian. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Garbellini, Simone. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Luna, Martín Francisco. Eidgenossische Technische Hochschule zurich (eth Zurich); . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vogg, Sebastian. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Souquet, Jonathan. Merck Serono International S.A.; Suiza
Fil: Broly, Hervé. Merck Serono International S.A.; Suiza
Fil: Morbidelli, Massimo. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Butté, Alessandro. Eidgenossische Technische Hochschule zurich (eth Zurich);
description Chromatography is widely used in biotherapeutics manufacturing, and the corresponding underlying mechanisms are well understood. To enable process control and automation, spectroscopic techniques are very convenient as on-line sensors, but their application is often limited by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer harvest. A state estimation procedure is developed by combining information coming from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF). A comparison with suitable experimental data shows that this approach allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and increased robustness.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180965
Feidl, Fabian; Garbellini, Simone; Luna, Martín Francisco; Vogg, Sebastian; Souquet, Jonathan; et al.; Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification; MDPI AG; Processes; 7; 10; 1-10-2019; 1-16
2227-9717
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180965
identifier_str_mv Feidl, Fabian; Garbellini, Simone; Luna, Martín Francisco; Vogg, Sebastian; Souquet, Jonathan; et al.; Combining mechanistic modeling and raman spectroscopy for monitoring antibody chromatographic purification; MDPI AG; Processes; 7; 10; 1-10-2019; 1-16
2227-9717
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/pr7100683
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/7/10/683
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335813752258560
score 12.952241