In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry

Autores
Barella, Mariano; Violi, Ianina Lucila; Gargiulo, Julian; Martínez, Luciana Paula; Goschin, Florian; Guglielmotti, Victoria; Pallarola, Diego Andres; Schlücker, Sebastian; Pilo Pais, Mauricio; Acuna, Guillermo P.; Maier, Stefan A.; Cortés, Emiliano; Stefani, Fernando Daniel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.
Fil: Barella, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Violi, Ianina Lucila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martínez, Luciana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Goschin, Florian. Ludwig Maximilians Universitat; Alemania
Fil: Guglielmotti, Victoria. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlücker, Sebastian. Universitat Essen; Alemania
Fil: Pilo Pais, Mauricio. University Of Fribourg; Suiza
Fil: Acuna, Guillermo P.. University Of Fribourg; Suiza
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania
Fil: Stefani, Fernando Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Materia
ANTI-STOKES NANOTHERMOMETRY
GRAPHENE
METAL PHOTOLUMINESCENCE
METALLIC NANOPARTICLES
OPTICAL PRINTING
PLASMONICS
THERMOPLASMONICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170794

id CONICETDig_ccd844942ba3746824005d6e99652ef9
oai_identifier_str oai:ri.conicet.gov.ar:11336/170794
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometryBarella, MarianoVioli, Ianina LucilaGargiulo, JulianMartínez, Luciana PaulaGoschin, FlorianGuglielmotti, VictoriaPallarola, Diego AndresSchlücker, SebastianPilo Pais, MauricioAcuna, Guillermo P.Maier, Stefan A.Cortés, EmilianoStefani, Fernando DanielANTI-STOKES NANOTHERMOMETRYGRAPHENEMETAL PHOTOLUMINESCENCEMETALLIC NANOPARTICLESOPTICAL PRINTINGPLASMONICSTHERMOPLASMONICShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.Fil: Barella, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Violi, Ianina Lucila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martínez, Luciana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Goschin, Florian. Ludwig Maximilians Universitat; AlemaniaFil: Guglielmotti, Victoria. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlücker, Sebastian. Universitat Essen; AlemaniaFil: Pilo Pais, Mauricio. University Of Fribourg; SuizaFil: Acuna, Guillermo P.. University Of Fribourg; SuizaFil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino UnidoFil: Cortés, Emiliano. Ludwig Maximilians Universitat; AlemaniaFil: Stefani, Fernando Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaAmerican Chemical Society2020-09-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170794Barella, Mariano; Violi, Ianina Lucila; Gargiulo, Julian; Martínez, Luciana Paula; Goschin, Florian; et al.; In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry; American Chemical Society; ACS Nano; 15; 2; 17-9-2020; 2458-24671936-08511936-086XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsnano.0c06185info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.0c06185info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/ftp/arxiv/papers/2108/2108.10954.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:47Zoai:ri.conicet.gov.ar:11336/170794instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:47.332CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
title In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
spellingShingle In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
Barella, Mariano
ANTI-STOKES NANOTHERMOMETRY
GRAPHENE
METAL PHOTOLUMINESCENCE
METALLIC NANOPARTICLES
OPTICAL PRINTING
PLASMONICS
THERMOPLASMONICS
title_short In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
title_full In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
title_fullStr In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
title_full_unstemmed In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
title_sort In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry
dc.creator.none.fl_str_mv Barella, Mariano
Violi, Ianina Lucila
Gargiulo, Julian
Martínez, Luciana Paula
Goschin, Florian
Guglielmotti, Victoria
Pallarola, Diego Andres
Schlücker, Sebastian
Pilo Pais, Mauricio
Acuna, Guillermo P.
Maier, Stefan A.
Cortés, Emiliano
Stefani, Fernando Daniel
author Barella, Mariano
author_facet Barella, Mariano
Violi, Ianina Lucila
Gargiulo, Julian
Martínez, Luciana Paula
Goschin, Florian
Guglielmotti, Victoria
Pallarola, Diego Andres
Schlücker, Sebastian
Pilo Pais, Mauricio
Acuna, Guillermo P.
Maier, Stefan A.
Cortés, Emiliano
Stefani, Fernando Daniel
author_role author
author2 Violi, Ianina Lucila
Gargiulo, Julian
Martínez, Luciana Paula
Goschin, Florian
Guglielmotti, Victoria
Pallarola, Diego Andres
Schlücker, Sebastian
Pilo Pais, Mauricio
Acuna, Guillermo P.
Maier, Stefan A.
Cortés, Emiliano
Stefani, Fernando Daniel
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ANTI-STOKES NANOTHERMOMETRY
GRAPHENE
METAL PHOTOLUMINESCENCE
METALLIC NANOPARTICLES
OPTICAL PRINTING
PLASMONICS
THERMOPLASMONICS
topic ANTI-STOKES NANOTHERMOMETRY
GRAPHENE
METAL PHOTOLUMINESCENCE
METALLIC NANOPARTICLES
OPTICAL PRINTING
PLASMONICS
THERMOPLASMONICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.
Fil: Barella, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Violi, Ianina Lucila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martínez, Luciana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Goschin, Florian. Ludwig Maximilians Universitat; Alemania
Fil: Guglielmotti, Victoria. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlücker, Sebastian. Universitat Essen; Alemania
Fil: Pilo Pais, Mauricio. University Of Fribourg; Suiza
Fil: Acuna, Guillermo P.. University Of Fribourg; Suiza
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania
Fil: Stefani, Fernando Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
description Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170794
Barella, Mariano; Violi, Ianina Lucila; Gargiulo, Julian; Martínez, Luciana Paula; Goschin, Florian; et al.; In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry; American Chemical Society; ACS Nano; 15; 2; 17-9-2020; 2458-2467
1936-0851
1936-086X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170794
identifier_str_mv Barella, Mariano; Violi, Ianina Lucila; Gargiulo, Julian; Martínez, Luciana Paula; Goschin, Florian; et al.; In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-stokes thermometry; American Chemical Society; ACS Nano; 15; 2; 17-9-2020; 2458-2467
1936-0851
1936-086X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsnano.0c06185
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.0c06185
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/ftp/arxiv/papers/2108/2108.10954.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613155600203776
score 13.070432