Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
- Autores
- Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; Galindo, Liliana María; Zaidenberg, Mario; Dantur Juri, Maria Julia
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.
Fil: Cuellar, Ana. Technical University of Denmark; Dinamarca
Fil: Coello Peralta, Roberto D.. Universidad de Guayaquil; Ecuador
Fil: Calle Atariguana, Davis. Universidad de Guayaquil; Ecuador
Fil: Palacios Macias, Martha. Universidad de Guayaquil; Ecuador
Fil: Duque Padilla, Paul Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina
Fil: Galindo, Liliana María. Universidad Nacional de Tucumán; Argentina
Fil: Zaidenberg, Mario. Ministerio de Salud. Dirección de Enfermedades Transmisibles por Vectores; Argentina
Fil: Dantur Juri, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundacion Miguel Lillo. Direccion de Biologia Integrativa. Instituto de Genetica y Microbiologia; - Materia
-
Malaria
Predictive models
Satellite images
ARIMA temporal series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265147
Ver los metadatos del registro completo
id |
CONICETDig_cbfad497d5cb1bf5cad64f2af969e715 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265147 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)Cuellar, AnaCoello Peralta, Roberto D.Calle Atariguana, DavisPalacios Macias, MarthaDuque Padilla, Paul LeonardoGalindo, Liliana MaríaZaidenberg, MarioDantur Juri, Maria JuliaMalariaPredictive modelsSatellite imagesARIMA temporal serieshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.Fil: Cuellar, Ana. Technical University of Denmark; DinamarcaFil: Coello Peralta, Roberto D.. Universidad de Guayaquil; EcuadorFil: Calle Atariguana, Davis. Universidad de Guayaquil; EcuadorFil: Palacios Macias, Martha. Universidad de Guayaquil; EcuadorFil: Duque Padilla, Paul Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Galindo, Liliana María. Universidad Nacional de Tucumán; ArgentinaFil: Zaidenberg, Mario. Ministerio de Salud. Dirección de Enfermedades Transmisibles por Vectores; ArgentinaFil: Dantur Juri, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundacion Miguel Lillo. Direccion de Biologia Integrativa. Instituto de Genetica y Microbiologia;Multidisciplinary Digital Publishing Institute2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265147Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-4672076-0817CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-0817/14/5/448info:eu-repo/semantics/altIdentifier/doi/10.3390/pathogens14050448info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:38:23Zoai:ri.conicet.gov.ar:11336/265147instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:38:23.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
title |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
spellingShingle |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) Cuellar, Ana Malaria Predictive models Satellite images ARIMA temporal series |
title_short |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
title_full |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
title_fullStr |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
title_full_unstemmed |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
title_sort |
Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005) |
dc.creator.none.fl_str_mv |
Cuellar, Ana Coello Peralta, Roberto D. Calle Atariguana, Davis Palacios Macias, Martha Duque Padilla, Paul Leonardo Galindo, Liliana María Zaidenberg, Mario Dantur Juri, Maria Julia |
author |
Cuellar, Ana |
author_facet |
Cuellar, Ana Coello Peralta, Roberto D. Calle Atariguana, Davis Palacios Macias, Martha Duque Padilla, Paul Leonardo Galindo, Liliana María Zaidenberg, Mario Dantur Juri, Maria Julia |
author_role |
author |
author2 |
Coello Peralta, Roberto D. Calle Atariguana, Davis Palacios Macias, Martha Duque Padilla, Paul Leonardo Galindo, Liliana María Zaidenberg, Mario Dantur Juri, Maria Julia |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Malaria Predictive models Satellite images ARIMA temporal series |
topic |
Malaria Predictive models Satellite images ARIMA temporal series |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials. Fil: Cuellar, Ana. Technical University of Denmark; Dinamarca Fil: Coello Peralta, Roberto D.. Universidad de Guayaquil; Ecuador Fil: Calle Atariguana, Davis. Universidad de Guayaquil; Ecuador Fil: Palacios Macias, Martha. Universidad de Guayaquil; Ecuador Fil: Duque Padilla, Paul Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina Fil: Galindo, Liliana María. Universidad Nacional de Tucumán; Argentina Fil: Zaidenberg, Mario. Ministerio de Salud. Dirección de Enfermedades Transmisibles por Vectores; Argentina Fil: Dantur Juri, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundacion Miguel Lillo. Direccion de Biologia Integrativa. Instituto de Genetica y Microbiologia; |
description |
Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265147 Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-467 2076-0817 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265147 |
identifier_str_mv |
Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-467 2076-0817 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-0817/14/5/448 info:eu-repo/semantics/altIdentifier/doi/10.3390/pathogens14050448 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082862569226240 |
score |
13.22299 |