Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)

Autores
Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; Galindo, Liliana María; Zaidenberg, Mario; Dantur Juri, Maria Julia
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.
Fil: Cuellar, Ana. Technical University of Denmark; Dinamarca
Fil: Coello Peralta, Roberto D.. Universidad de Guayaquil; Ecuador
Fil: Calle Atariguana, Davis. Universidad de Guayaquil; Ecuador
Fil: Palacios Macias, Martha. Universidad de Guayaquil; Ecuador
Fil: Duque Padilla, Paul Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina
Fil: Galindo, Liliana María. Universidad Nacional de Tucumán; Argentina
Fil: Zaidenberg, Mario. Ministerio de Salud. Dirección de Enfermedades Transmisibles por Vectores; Argentina
Fil: Dantur Juri, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundacion Miguel Lillo. Direccion de Biologia Integrativa. Instituto de Genetica y Microbiologia;
Materia
Malaria
Predictive models
Satellite images
ARIMA temporal series
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265147

id CONICETDig_cbfad497d5cb1bf5cad64f2af969e715
oai_identifier_str oai:ri.conicet.gov.ar:11336/265147
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)Cuellar, AnaCoello Peralta, Roberto D.Calle Atariguana, DavisPalacios Macias, MarthaDuque Padilla, Paul LeonardoGalindo, Liliana MaríaZaidenberg, MarioDantur Juri, Maria JuliaMalariaPredictive modelsSatellite imagesARIMA temporal serieshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.Fil: Cuellar, Ana. Technical University of Denmark; DinamarcaFil: Coello Peralta, Roberto D.. Universidad de Guayaquil; EcuadorFil: Calle Atariguana, Davis. Universidad de Guayaquil; EcuadorFil: Palacios Macias, Martha. Universidad de Guayaquil; EcuadorFil: Duque Padilla, Paul Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Galindo, Liliana María. Universidad Nacional de Tucumán; ArgentinaFil: Zaidenberg, Mario. Ministerio de Salud. Dirección de Enfermedades Transmisibles por Vectores; ArgentinaFil: Dantur Juri, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundacion Miguel Lillo. Direccion de Biologia Integrativa. Instituto de Genetica y Microbiologia;Multidisciplinary Digital Publishing Institute2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265147Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-4672076-0817CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-0817/14/5/448info:eu-repo/semantics/altIdentifier/doi/10.3390/pathogens14050448info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:38:23Zoai:ri.conicet.gov.ar:11336/265147instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:38:23.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
title Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
spellingShingle Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
Cuellar, Ana
Malaria
Predictive models
Satellite images
ARIMA temporal series
title_short Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
title_full Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
title_fullStr Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
title_full_unstemmed Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
title_sort Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)
dc.creator.none.fl_str_mv Cuellar, Ana
Coello Peralta, Roberto D.
Calle Atariguana, Davis
Palacios Macias, Martha
Duque Padilla, Paul Leonardo
Galindo, Liliana María
Zaidenberg, Mario
Dantur Juri, Maria Julia
author Cuellar, Ana
author_facet Cuellar, Ana
Coello Peralta, Roberto D.
Calle Atariguana, Davis
Palacios Macias, Martha
Duque Padilla, Paul Leonardo
Galindo, Liliana María
Zaidenberg, Mario
Dantur Juri, Maria Julia
author_role author
author2 Coello Peralta, Roberto D.
Calle Atariguana, Davis
Palacios Macias, Martha
Duque Padilla, Paul Leonardo
Galindo, Liliana María
Zaidenberg, Mario
Dantur Juri, Maria Julia
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Malaria
Predictive models
Satellite images
ARIMA temporal series
topic Malaria
Predictive models
Satellite images
ARIMA temporal series
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.
Fil: Cuellar, Ana. Technical University of Denmark; Dinamarca
Fil: Coello Peralta, Roberto D.. Universidad de Guayaquil; Ecuador
Fil: Calle Atariguana, Davis. Universidad de Guayaquil; Ecuador
Fil: Palacios Macias, Martha. Universidad de Guayaquil; Ecuador
Fil: Duque Padilla, Paul Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina
Fil: Galindo, Liliana María. Universidad Nacional de Tucumán; Argentina
Fil: Zaidenberg, Mario. Ministerio de Salud. Dirección de Enfermedades Transmisibles por Vectores; Argentina
Fil: Dantur Juri, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundacion Miguel Lillo. Direccion de Biologia Integrativa. Instituto de Genetica y Microbiologia;
description Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.
publishDate 2025
dc.date.none.fl_str_mv 2025-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265147
Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-467
2076-0817
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265147
identifier_str_mv Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-467
2076-0817
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-0817/14/5/448
info:eu-repo/semantics/altIdentifier/doi/10.3390/pathogens14050448
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082862569226240
score 13.22299