Novel enzyme-polymer conjugates for biotechnological applications
- Autores
- Romero, Oscar Eduardo; Rivero, Cintia Wanda; Guisán, José M.; Palomo, José M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present research, a rapid, simple and efficient chemoselective method for the site-directed incorporation of tailor-made polymers into protein to create biocatalysts with excellent properties for pharmaceutical industrial purpose has been performed. First we focused on the protein engineering of the Geobacillus thermocatenulatus lipase 2 (BTL2) to replace the two cysteines (Cys65, Cys296) in the wild type enzyme (BTL-WT) by two serines. Then, by similar mode, a unique cysteine was introduced in the lid area of the protein. For the site-directed polymer incorporation, a set of different tailor-made thiol-ionic-polymers were synthesized and the protein cysteine was previously activated with 2,2-dithiodipyridine (2-PDS) to allow the disulfide exchange. The protected BTL variants were specifically modified with the different polymers in excellent yields, creating a small library of new biocatalysts. Different and important changes in the catalytic properties, possible caused by structural changes in the lid region, were observed. The different modified biocatalysts were tested in the synthesis of intermediates of antiviral and antitumor drugs, like nucleoside analogues and derivatives of phenylglutaric acid. In the hydrolysis of per-acetylated thymidine, the best biocatalyst was the BTL*-193-DextCOOH , where the activity was increased in 3-fold and the regioselectivity was improved, reaching a yield of 92% of 3’-O-acetyl-thymidine. In the case of the asymmetric hydrolysis of dimethyl phenylglutarate, the best result was found with BTL*-193-DextNH2-6000, where the enzyme activity was increased more than 5-fold and the enantiomeric excess was >99%.
Fil: Romero, Oscar Eduardo. Consejo Superior de Investigaciones Cientificas; España
Fil: Rivero, Cintia Wanda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guisán, José M.. Consejo Superior de Investigaciones Cientificas; España
Fil: Palomo, José M.. Consejo Superior de Investigaciones Cientificas; España - Materia
-
Biocatalyst
Nucleosides
Lipase
Drugs precursor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23318
Ver los metadatos del registro completo
id |
CONICETDig_cbded70505ea11b2c968d00b0b0597ac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23318 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Novel enzyme-polymer conjugates for biotechnological applicationsRomero, Oscar EduardoRivero, Cintia WandaGuisán, José M.Palomo, José M.BiocatalystNucleosidesLipaseDrugs precursorhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2In the present research, a rapid, simple and efficient chemoselective method for the site-directed incorporation of tailor-made polymers into protein to create biocatalysts with excellent properties for pharmaceutical industrial purpose has been performed. First we focused on the protein engineering of the Geobacillus thermocatenulatus lipase 2 (BTL2) to replace the two cysteines (Cys65, Cys296) in the wild type enzyme (BTL-WT) by two serines. Then, by similar mode, a unique cysteine was introduced in the lid area of the protein. For the site-directed polymer incorporation, a set of different tailor-made thiol-ionic-polymers were synthesized and the protein cysteine was previously activated with 2,2-dithiodipyridine (2-PDS) to allow the disulfide exchange. The protected BTL variants were specifically modified with the different polymers in excellent yields, creating a small library of new biocatalysts. Different and important changes in the catalytic properties, possible caused by structural changes in the lid region, were observed. The different modified biocatalysts were tested in the synthesis of intermediates of antiviral and antitumor drugs, like nucleoside analogues and derivatives of phenylglutaric acid. In the hydrolysis of per-acetylated thymidine, the best biocatalyst was the BTL*-193-DextCOOH , where the activity was increased in 3-fold and the regioselectivity was improved, reaching a yield of 92% of 3’-O-acetyl-thymidine. In the case of the asymmetric hydrolysis of dimethyl phenylglutarate, the best result was found with BTL*-193-DextNH2-6000, where the enzyme activity was increased more than 5-fold and the enantiomeric excess was >99%.Fil: Romero, Oscar Eduardo. Consejo Superior de Investigaciones Cientificas; EspañaFil: Rivero, Cintia Wanda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guisán, José M.. Consejo Superior de Investigaciones Cientificas; EspañaFil: Palomo, José M.. Consejo Superior de Investigaciones Cientificas; EspañaPeerJ2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23318Romero, Oscar Eduardo; Rivero, Cintia Wanda; Guisán, José M.; Palomo, José M.; Novel enzyme-polymer conjugates for biotechnological applications; PeerJ; PeerJ; 1-2013; 1-17; e272167-8359CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.27info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/27/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:00Zoai:ri.conicet.gov.ar:11336/23318instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:00.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Novel enzyme-polymer conjugates for biotechnological applications |
title |
Novel enzyme-polymer conjugates for biotechnological applications |
spellingShingle |
Novel enzyme-polymer conjugates for biotechnological applications Romero, Oscar Eduardo Biocatalyst Nucleosides Lipase Drugs precursor |
title_short |
Novel enzyme-polymer conjugates for biotechnological applications |
title_full |
Novel enzyme-polymer conjugates for biotechnological applications |
title_fullStr |
Novel enzyme-polymer conjugates for biotechnological applications |
title_full_unstemmed |
Novel enzyme-polymer conjugates for biotechnological applications |
title_sort |
Novel enzyme-polymer conjugates for biotechnological applications |
dc.creator.none.fl_str_mv |
Romero, Oscar Eduardo Rivero, Cintia Wanda Guisán, José M. Palomo, José M. |
author |
Romero, Oscar Eduardo |
author_facet |
Romero, Oscar Eduardo Rivero, Cintia Wanda Guisán, José M. Palomo, José M. |
author_role |
author |
author2 |
Rivero, Cintia Wanda Guisán, José M. Palomo, José M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Biocatalyst Nucleosides Lipase Drugs precursor |
topic |
Biocatalyst Nucleosides Lipase Drugs precursor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the present research, a rapid, simple and efficient chemoselective method for the site-directed incorporation of tailor-made polymers into protein to create biocatalysts with excellent properties for pharmaceutical industrial purpose has been performed. First we focused on the protein engineering of the Geobacillus thermocatenulatus lipase 2 (BTL2) to replace the two cysteines (Cys65, Cys296) in the wild type enzyme (BTL-WT) by two serines. Then, by similar mode, a unique cysteine was introduced in the lid area of the protein. For the site-directed polymer incorporation, a set of different tailor-made thiol-ionic-polymers were synthesized and the protein cysteine was previously activated with 2,2-dithiodipyridine (2-PDS) to allow the disulfide exchange. The protected BTL variants were specifically modified with the different polymers in excellent yields, creating a small library of new biocatalysts. Different and important changes in the catalytic properties, possible caused by structural changes in the lid region, were observed. The different modified biocatalysts were tested in the synthesis of intermediates of antiviral and antitumor drugs, like nucleoside analogues and derivatives of phenylglutaric acid. In the hydrolysis of per-acetylated thymidine, the best biocatalyst was the BTL*-193-DextCOOH , where the activity was increased in 3-fold and the regioselectivity was improved, reaching a yield of 92% of 3’-O-acetyl-thymidine. In the case of the asymmetric hydrolysis of dimethyl phenylglutarate, the best result was found with BTL*-193-DextNH2-6000, where the enzyme activity was increased more than 5-fold and the enantiomeric excess was >99%. Fil: Romero, Oscar Eduardo. Consejo Superior de Investigaciones Cientificas; España Fil: Rivero, Cintia Wanda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Guisán, José M.. Consejo Superior de Investigaciones Cientificas; España Fil: Palomo, José M.. Consejo Superior de Investigaciones Cientificas; España |
description |
In the present research, a rapid, simple and efficient chemoselective method for the site-directed incorporation of tailor-made polymers into protein to create biocatalysts with excellent properties for pharmaceutical industrial purpose has been performed. First we focused on the protein engineering of the Geobacillus thermocatenulatus lipase 2 (BTL2) to replace the two cysteines (Cys65, Cys296) in the wild type enzyme (BTL-WT) by two serines. Then, by similar mode, a unique cysteine was introduced in the lid area of the protein. For the site-directed polymer incorporation, a set of different tailor-made thiol-ionic-polymers were synthesized and the protein cysteine was previously activated with 2,2-dithiodipyridine (2-PDS) to allow the disulfide exchange. The protected BTL variants were specifically modified with the different polymers in excellent yields, creating a small library of new biocatalysts. Different and important changes in the catalytic properties, possible caused by structural changes in the lid region, were observed. The different modified biocatalysts were tested in the synthesis of intermediates of antiviral and antitumor drugs, like nucleoside analogues and derivatives of phenylglutaric acid. In the hydrolysis of per-acetylated thymidine, the best biocatalyst was the BTL*-193-DextCOOH , where the activity was increased in 3-fold and the regioselectivity was improved, reaching a yield of 92% of 3’-O-acetyl-thymidine. In the case of the asymmetric hydrolysis of dimethyl phenylglutarate, the best result was found with BTL*-193-DextNH2-6000, where the enzyme activity was increased more than 5-fold and the enantiomeric excess was >99%. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23318 Romero, Oscar Eduardo; Rivero, Cintia Wanda; Guisán, José M.; Palomo, José M.; Novel enzyme-polymer conjugates for biotechnological applications; PeerJ; PeerJ; 1-2013; 1-17; e27 2167-8359 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23318 |
identifier_str_mv |
Romero, Oscar Eduardo; Rivero, Cintia Wanda; Guisán, José M.; Palomo, José M.; Novel enzyme-polymer conjugates for biotechnological applications; PeerJ; PeerJ; 1-2013; 1-17; e27 2167-8359 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.27 info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/27/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
PeerJ |
publisher.none.fl_str_mv |
PeerJ |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614062791458816 |
score |
13.070432 |