A coalgebraic approach to type spaces
- Autores
- Viglizzo, Ignacio Dario
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces.
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
HARSANYI TYPE SPACES
COALGEBRA
BELIEFS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81649
Ver los metadatos del registro completo
id |
CONICETDig_cbc4a1309872e5fec92935e27bbb043e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81649 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A coalgebraic approach to type spacesViglizzo, Ignacio DarioHARSANYI TYPE SPACESCOALGEBRABELIEFShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces.Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaAsociación Argentina de Mecánica Computacional2007-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81649Viglizzo, Ignacio Dario; A coalgebraic approach to type spaces; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 6; 10-2007; 543-5581666-6070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/1249info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:44Zoai:ri.conicet.gov.ar:11336/81649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:44.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A coalgebraic approach to type spaces |
title |
A coalgebraic approach to type spaces |
spellingShingle |
A coalgebraic approach to type spaces Viglizzo, Ignacio Dario HARSANYI TYPE SPACES COALGEBRA BELIEFS |
title_short |
A coalgebraic approach to type spaces |
title_full |
A coalgebraic approach to type spaces |
title_fullStr |
A coalgebraic approach to type spaces |
title_full_unstemmed |
A coalgebraic approach to type spaces |
title_sort |
A coalgebraic approach to type spaces |
dc.creator.none.fl_str_mv |
Viglizzo, Ignacio Dario |
author |
Viglizzo, Ignacio Dario |
author_facet |
Viglizzo, Ignacio Dario |
author_role |
author |
dc.subject.none.fl_str_mv |
HARSANYI TYPE SPACES COALGEBRA BELIEFS |
topic |
HARSANYI TYPE SPACES COALGEBRA BELIEFS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces. Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina |
description |
When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81649 Viglizzo, Ignacio Dario; A coalgebraic approach to type spaces; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 6; 10-2007; 543-558 1666-6070 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81649 |
identifier_str_mv |
Viglizzo, Ignacio Dario; A coalgebraic approach to type spaces; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 6; 10-2007; 543-558 1666-6070 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/1249 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083255754817536 |
score |
13.22299 |