A coalgebraic approach to type spaces

Autores
Viglizzo, Ignacio Dario
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces.
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
HARSANYI TYPE SPACES
COALGEBRA
BELIEFS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/81649

id CONICETDig_cbc4a1309872e5fec92935e27bbb043e
oai_identifier_str oai:ri.conicet.gov.ar:11336/81649
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A coalgebraic approach to type spacesViglizzo, Ignacio DarioHARSANYI TYPE SPACESCOALGEBRABELIEFShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces.Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaAsociación Argentina de Mecánica Computacional2007-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81649Viglizzo, Ignacio Dario; A coalgebraic approach to type spaces; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 6; 10-2007; 543-5581666-6070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/1249info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:44Zoai:ri.conicet.gov.ar:11336/81649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:44.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A coalgebraic approach to type spaces
title A coalgebraic approach to type spaces
spellingShingle A coalgebraic approach to type spaces
Viglizzo, Ignacio Dario
HARSANYI TYPE SPACES
COALGEBRA
BELIEFS
title_short A coalgebraic approach to type spaces
title_full A coalgebraic approach to type spaces
title_fullStr A coalgebraic approach to type spaces
title_full_unstemmed A coalgebraic approach to type spaces
title_sort A coalgebraic approach to type spaces
dc.creator.none.fl_str_mv Viglizzo, Ignacio Dario
author Viglizzo, Ignacio Dario
author_facet Viglizzo, Ignacio Dario
author_role author
dc.subject.none.fl_str_mv HARSANYI TYPE SPACES
COALGEBRA
BELIEFS
topic HARSANYI TYPE SPACES
COALGEBRA
BELIEFS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces.
Fil: Viglizzo, Ignacio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description When two or more players are engaged in a game with uncertainties, they need to consider what the other players’ beliefs may be, which in turn are influenced by what they think the first player’s ideas are. Harsanyi defined type spaces simply as a set in which all possible players-as defined by their beliefs- could be found. Later on, more meaningful constructions of this set were performed. The theory of coalgebra, on the other hand, has been created to deal with circular phenomena, so its application to the problem of type spaces is only natural. We show how to apply it and we use the more general framework of category theory to compare the relative strength of previous solutions to the problem of defining type spaces.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/81649
Viglizzo, Ignacio Dario; A coalgebraic approach to type spaces; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 6; 10-2007; 543-558
1666-6070
CONICET Digital
CONICET
url http://hdl.handle.net/11336/81649
identifier_str_mv Viglizzo, Ignacio Dario; A coalgebraic approach to type spaces; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVI; 6; 10-2007; 543-558
1666-6070
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/1249
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083255754817536
score 13.22299