Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region
- Autores
- Gutierrez, Ricardo A.; Junquas, Clémentine; Armijos, Elisa; Sörensson, Anna; Espinoza, Jhan Carlo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly difficult to meet over complex regions such as the Andes-Amazon transition region, where the Andean topography and abundance of tropical rainfall regimes remain a challenge for numerical climate models. In this study, we evaluate the ability of 30 regional climate simulations (6 RCMs driven by 10 global climate models) to reproduce historical (1981–2005) rainfall climatology and temporal variability over the Andes-Amazon transition region. We assess spatio-temporal features such as spatial distribution of rainfall, focusing on the orographic effects over the Andes-Amazon “rainfall hotspots” region, and seasonal and interannual precipitation variability. The Eta RCM exhibits the highest spatial correlation (up to 0.6) and accurately reproduces mean annual precipitation and orographic precipitation patterns across the region, while some other RCMs have good performances at specific locations. Most RCMs simulate a wet bias over the highlands, particularly at the eastern Andean summits, as evidenced by the 100%–2,500% overestimations of precipitation in these regions. Annual cycles are well represented by most RCMs, but peak seasons are exaggerated, especially at equatorial locations. No RCM is particularly skillful in reproducing the interannual variability patterns. Results highlight skills and weaknesses of the different regional climate simulations, and can assist in the selection of regional climate simulations for impact studies in the Andes-Amazon transition zone.
Fil: Gutierrez, Ricardo A.. Universidad Nacional Agraria La Molina; Perú. Instituto Geofísico del Perú; Perú
Fil: Junquas, Clémentine. Universite Grenoble Alpes; Francia. Servicio Nacional de Meteorología e Hidrología; Perú
Fil: Armijos, Elisa. Universidad Nacional Agraria La Molina; Perú. Instituto Geofísico del Peru; Perú
Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: Espinoza, Jhan Carlo. Universite Grenoble Alpes; Francia. Pontificia Universidad Católica de Perú; Perú - Materia
-
REGIONAL CLIMATE MODELLING
ANDES-AMAZON TRANSITION ZONE
PRECIPITATION
ETA RCM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/261111
Ver los metadatos del registro completo
id |
CONICETDig_cb46be091370541fb86a509b3922f56c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/261111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition RegionGutierrez, Ricardo A.Junquas, ClémentineArmijos, ElisaSörensson, AnnaEspinoza, Jhan CarloREGIONAL CLIMATE MODELLINGANDES-AMAZON TRANSITION ZONEPRECIPITATIONETA RCMhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly difficult to meet over complex regions such as the Andes-Amazon transition region, where the Andean topography and abundance of tropical rainfall regimes remain a challenge for numerical climate models. In this study, we evaluate the ability of 30 regional climate simulations (6 RCMs driven by 10 global climate models) to reproduce historical (1981–2005) rainfall climatology and temporal variability over the Andes-Amazon transition region. We assess spatio-temporal features such as spatial distribution of rainfall, focusing on the orographic effects over the Andes-Amazon “rainfall hotspots” region, and seasonal and interannual precipitation variability. The Eta RCM exhibits the highest spatial correlation (up to 0.6) and accurately reproduces mean annual precipitation and orographic precipitation patterns across the region, while some other RCMs have good performances at specific locations. Most RCMs simulate a wet bias over the highlands, particularly at the eastern Andean summits, as evidenced by the 100%–2,500% overestimations of precipitation in these regions. Annual cycles are well represented by most RCMs, but peak seasons are exaggerated, especially at equatorial locations. No RCM is particularly skillful in reproducing the interannual variability patterns. Results highlight skills and weaknesses of the different regional climate simulations, and can assist in the selection of regional climate simulations for impact studies in the Andes-Amazon transition zone.Fil: Gutierrez, Ricardo A.. Universidad Nacional Agraria La Molina; Perú. Instituto Geofísico del Perú; PerúFil: Junquas, Clémentine. Universite Grenoble Alpes; Francia. Servicio Nacional de Meteorología e Hidrología; PerúFil: Armijos, Elisa. Universidad Nacional Agraria La Molina; Perú. Instituto Geofísico del Peru; PerúFil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: Espinoza, Jhan Carlo. Universite Grenoble Alpes; Francia. Pontificia Universidad Católica de Perú; PerúWiley2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/261111Gutierrez, Ricardo A.; Junquas, Clémentine; Armijos, Elisa; Sörensson, Anna; Espinoza, Jhan Carlo; Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region; Wiley; Journal of Geophysical Research; 129; 1; 1-2024; 1-232169-897X2169-8996CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD038618info:eu-repo/semantics/altIdentifier/doi/10.1029/2023JD038618info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:00Zoai:ri.conicet.gov.ar:11336/261111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:01.07CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
title |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
spellingShingle |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region Gutierrez, Ricardo A. REGIONAL CLIMATE MODELLING ANDES-AMAZON TRANSITION ZONE PRECIPITATION ETA RCM |
title_short |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
title_full |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
title_fullStr |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
title_full_unstemmed |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
title_sort |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region |
dc.creator.none.fl_str_mv |
Gutierrez, Ricardo A. Junquas, Clémentine Armijos, Elisa Sörensson, Anna Espinoza, Jhan Carlo |
author |
Gutierrez, Ricardo A. |
author_facet |
Gutierrez, Ricardo A. Junquas, Clémentine Armijos, Elisa Sörensson, Anna Espinoza, Jhan Carlo |
author_role |
author |
author2 |
Junquas, Clémentine Armijos, Elisa Sörensson, Anna Espinoza, Jhan Carlo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
REGIONAL CLIMATE MODELLING ANDES-AMAZON TRANSITION ZONE PRECIPITATION ETA RCM |
topic |
REGIONAL CLIMATE MODELLING ANDES-AMAZON TRANSITION ZONE PRECIPITATION ETA RCM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly difficult to meet over complex regions such as the Andes-Amazon transition region, where the Andean topography and abundance of tropical rainfall regimes remain a challenge for numerical climate models. In this study, we evaluate the ability of 30 regional climate simulations (6 RCMs driven by 10 global climate models) to reproduce historical (1981–2005) rainfall climatology and temporal variability over the Andes-Amazon transition region. We assess spatio-temporal features such as spatial distribution of rainfall, focusing on the orographic effects over the Andes-Amazon “rainfall hotspots” region, and seasonal and interannual precipitation variability. The Eta RCM exhibits the highest spatial correlation (up to 0.6) and accurately reproduces mean annual precipitation and orographic precipitation patterns across the region, while some other RCMs have good performances at specific locations. Most RCMs simulate a wet bias over the highlands, particularly at the eastern Andean summits, as evidenced by the 100%–2,500% overestimations of precipitation in these regions. Annual cycles are well represented by most RCMs, but peak seasons are exaggerated, especially at equatorial locations. No RCM is particularly skillful in reproducing the interannual variability patterns. Results highlight skills and weaknesses of the different regional climate simulations, and can assist in the selection of regional climate simulations for impact studies in the Andes-Amazon transition zone. Fil: Gutierrez, Ricardo A.. Universidad Nacional Agraria La Molina; Perú. Instituto Geofísico del Perú; Perú Fil: Junquas, Clémentine. Universite Grenoble Alpes; Francia. Servicio Nacional de Meteorología e Hidrología; Perú Fil: Armijos, Elisa. Universidad Nacional Agraria La Molina; Perú. Instituto Geofísico del Peru; Perú Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina Fil: Espinoza, Jhan Carlo. Universite Grenoble Alpes; Francia. Pontificia Universidad Católica de Perú; Perú |
description |
Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly difficult to meet over complex regions such as the Andes-Amazon transition region, where the Andean topography and abundance of tropical rainfall regimes remain a challenge for numerical climate models. In this study, we evaluate the ability of 30 regional climate simulations (6 RCMs driven by 10 global climate models) to reproduce historical (1981–2005) rainfall climatology and temporal variability over the Andes-Amazon transition region. We assess spatio-temporal features such as spatial distribution of rainfall, focusing on the orographic effects over the Andes-Amazon “rainfall hotspots” region, and seasonal and interannual precipitation variability. The Eta RCM exhibits the highest spatial correlation (up to 0.6) and accurately reproduces mean annual precipitation and orographic precipitation patterns across the region, while some other RCMs have good performances at specific locations. Most RCMs simulate a wet bias over the highlands, particularly at the eastern Andean summits, as evidenced by the 100%–2,500% overestimations of precipitation in these regions. Annual cycles are well represented by most RCMs, but peak seasons are exaggerated, especially at equatorial locations. No RCM is particularly skillful in reproducing the interannual variability patterns. Results highlight skills and weaknesses of the different regional climate simulations, and can assist in the selection of regional climate simulations for impact studies in the Andes-Amazon transition zone. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/261111 Gutierrez, Ricardo A.; Junquas, Clémentine; Armijos, Elisa; Sörensson, Anna; Espinoza, Jhan Carlo; Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region; Wiley; Journal of Geophysical Research; 129; 1; 1-2024; 1-23 2169-897X 2169-8996 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/261111 |
identifier_str_mv |
Gutierrez, Ricardo A.; Junquas, Clémentine; Armijos, Elisa; Sörensson, Anna; Espinoza, Jhan Carlo; Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region; Wiley; Journal of Geophysical Research; 129; 1; 1-2024; 1-23 2169-897X 2169-8996 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD038618 info:eu-repo/semantics/altIdentifier/doi/10.1029/2023JD038618 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269377850769408 |
score |
13.13397 |