Enhanced gap fraction extraction from hemispherical photography
- Autores
- Díaz, Gastón Mauro; Lencinas, José Daniel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Canopy structure can be estimated using gap fraction (GF) data, which can be directly measured with hemispherical photography. However, GF data accuracy is affected by sunlit canopy, multiple scattering, vignetting, blooming, and chromatic aberration. Here, we present an algorithm to classify hemispherical photography, whose aim is to reduce errors in the extraction of GF data. The algorithm, which was implemented in free software, uses color transformations, fuzzy logic, and object-based image analysis. The results suggest that color and texture, rather that only brightness, can be used to extract GF data.
Fil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Forestry
Fuzzy Logic
Fisheye Photography
Image Classification
Image Texture Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21201
Ver los metadatos del registro completo
id |
CONICETDig_cb04ac88353418c744235e479cfdb93a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21201 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhanced gap fraction extraction from hemispherical photographyDíaz, Gastón MauroLencinas, José DanielForestryFuzzy LogicFisheye PhotographyImage ClassificationImage Texture Analysishttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Canopy structure can be estimated using gap fraction (GF) data, which can be directly measured with hemispherical photography. However, GF data accuracy is affected by sunlit canopy, multiple scattering, vignetting, blooming, and chromatic aberration. Here, we present an algorithm to classify hemispherical photography, whose aim is to reduce errors in the extraction of GF data. The algorithm, which was implemented in free software, uses color transformations, fuzzy logic, and object-based image analysis. The results suggest that color and texture, rather that only brightness, can be used to extract GF data.Fil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitute of Electrical and Electronics Engineers2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21201Díaz, Gastón Mauro; Lencinas, José Daniel; Enhanced gap fraction extraction from hemispherical photography; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 12; 8; 3-2015; 1785-17891545-598X1558-0571CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7103294/info:eu-repo/semantics/altIdentifier/doi/10.1109/LGRS.2015.2425931info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:53Zoai:ri.conicet.gov.ar:11336/21201instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:53.818CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhanced gap fraction extraction from hemispherical photography |
title |
Enhanced gap fraction extraction from hemispherical photography |
spellingShingle |
Enhanced gap fraction extraction from hemispherical photography Díaz, Gastón Mauro Forestry Fuzzy Logic Fisheye Photography Image Classification Image Texture Analysis |
title_short |
Enhanced gap fraction extraction from hemispherical photography |
title_full |
Enhanced gap fraction extraction from hemispherical photography |
title_fullStr |
Enhanced gap fraction extraction from hemispherical photography |
title_full_unstemmed |
Enhanced gap fraction extraction from hemispherical photography |
title_sort |
Enhanced gap fraction extraction from hemispherical photography |
dc.creator.none.fl_str_mv |
Díaz, Gastón Mauro Lencinas, José Daniel |
author |
Díaz, Gastón Mauro |
author_facet |
Díaz, Gastón Mauro Lencinas, José Daniel |
author_role |
author |
author2 |
Lencinas, José Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Forestry Fuzzy Logic Fisheye Photography Image Classification Image Texture Analysis |
topic |
Forestry Fuzzy Logic Fisheye Photography Image Classification Image Texture Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Canopy structure can be estimated using gap fraction (GF) data, which can be directly measured with hemispherical photography. However, GF data accuracy is affected by sunlit canopy, multiple scattering, vignetting, blooming, and chromatic aberration. Here, we present an algorithm to classify hemispherical photography, whose aim is to reduce errors in the extraction of GF data. The algorithm, which was implemented in free software, uses color transformations, fuzzy logic, and object-based image analysis. The results suggest that color and texture, rather that only brightness, can be used to extract GF data. Fil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Canopy structure can be estimated using gap fraction (GF) data, which can be directly measured with hemispherical photography. However, GF data accuracy is affected by sunlit canopy, multiple scattering, vignetting, blooming, and chromatic aberration. Here, we present an algorithm to classify hemispherical photography, whose aim is to reduce errors in the extraction of GF data. The algorithm, which was implemented in free software, uses color transformations, fuzzy logic, and object-based image analysis. The results suggest that color and texture, rather that only brightness, can be used to extract GF data. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21201 Díaz, Gastón Mauro; Lencinas, José Daniel; Enhanced gap fraction extraction from hemispherical photography; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 12; 8; 3-2015; 1785-1789 1545-598X 1558-0571 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21201 |
identifier_str_mv |
Díaz, Gastón Mauro; Lencinas, José Daniel; Enhanced gap fraction extraction from hemispherical photography; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 12; 8; 3-2015; 1785-1789 1545-598X 1558-0571 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7103294/ info:eu-repo/semantics/altIdentifier/doi/10.1109/LGRS.2015.2425931 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613434891567104 |
score |
13.070432 |