Model-based local thresholding for canopy hemispherical photography
- Autores
- Díaz, Gastón Mauro; Lencinas, José Daniel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Canopy hemispherical photography (HP) is widely used to estimate forest structural variables. To achieve good results with HP, a classification algorithm is needed to produce binary images to accurately estimate the gap fraction. Our aim was to develop a local thresholding method for binarizing carefully acquired hemispherical photographs. The method was implemented in the R package “caiman”. Working with photographs of artificial structures and using a linear model, our method turns the cumbersome problem of finding the optimal threshold value into a simpler one, which is estimating the digital number (DN) of the sky. Using hemispherical photographs of a deciduous forest, we compared our method with several standard and state-of-the-art binarization techniques. Our method was as accurate as the best-tested binarization techniques, regardless of the exposure, as long as it was between 0 and 2 stops over the open sky auto-exposure. Moreover, our method did not require knowing the exact relative exposure. Intending to balance accuracy and practicality, we mapped the sky DN using the values extracted from gaps. However, we discussed whether a more accurate but less practical way to map sky DN could provide, along with our method, a new benchmark.
Fil: Díaz, Gastón Mauro. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina - Materia
-
CLUMPING INDEX
EXPOSURE
GAP FRACTION
LEAF AREA INDEX
LOCAL THRESHOLDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99513
Ver los metadatos del registro completo
id |
CONICETDig_47296e26c8536d948e81bc665d1ae92b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99513 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model-based local thresholding for canopy hemispherical photographyDíaz, Gastón MauroLencinas, José DanielCLUMPING INDEXEXPOSUREGAP FRACTIONLEAF AREA INDEXLOCAL THRESHOLDINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Canopy hemispherical photography (HP) is widely used to estimate forest structural variables. To achieve good results with HP, a classification algorithm is needed to produce binary images to accurately estimate the gap fraction. Our aim was to develop a local thresholding method for binarizing carefully acquired hemispherical photographs. The method was implemented in the R package “caiman”. Working with photographs of artificial structures and using a linear model, our method turns the cumbersome problem of finding the optimal threshold value into a simpler one, which is estimating the digital number (DN) of the sky. Using hemispherical photographs of a deciduous forest, we compared our method with several standard and state-of-the-art binarization techniques. Our method was as accurate as the best-tested binarization techniques, regardless of the exposure, as long as it was between 0 and 2 stops over the open sky auto-exposure. Moreover, our method did not require knowing the exact relative exposure. Intending to balance accuracy and practicality, we mapped the sky DN using the values extracted from gaps. However, we discussed whether a more accurate but less practical way to map sky DN could provide, along with our method, a new benchmark.Fil: Díaz, Gastón Mauro. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaNational Research Council Canada-NRC Research Press2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99513Díaz, Gastón Mauro; Lencinas, José Daniel; Model-based local thresholding for canopy hemispherical photography; National Research Council Canada-NRC Research Press; Canadian Journal Of Forest Research; 48; 10; 7-2018; 1204-12160045-5067CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0006#.XmvONHJKiUkinfo:eu-repo/semantics/altIdentifier/doi/10.1139/cjfr-2018-0006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:26Zoai:ri.conicet.gov.ar:11336/99513instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:27.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model-based local thresholding for canopy hemispherical photography |
title |
Model-based local thresholding for canopy hemispherical photography |
spellingShingle |
Model-based local thresholding for canopy hemispherical photography Díaz, Gastón Mauro CLUMPING INDEX EXPOSURE GAP FRACTION LEAF AREA INDEX LOCAL THRESHOLDING |
title_short |
Model-based local thresholding for canopy hemispherical photography |
title_full |
Model-based local thresholding for canopy hemispherical photography |
title_fullStr |
Model-based local thresholding for canopy hemispherical photography |
title_full_unstemmed |
Model-based local thresholding for canopy hemispherical photography |
title_sort |
Model-based local thresholding for canopy hemispherical photography |
dc.creator.none.fl_str_mv |
Díaz, Gastón Mauro Lencinas, José Daniel |
author |
Díaz, Gastón Mauro |
author_facet |
Díaz, Gastón Mauro Lencinas, José Daniel |
author_role |
author |
author2 |
Lencinas, José Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
CLUMPING INDEX EXPOSURE GAP FRACTION LEAF AREA INDEX LOCAL THRESHOLDING |
topic |
CLUMPING INDEX EXPOSURE GAP FRACTION LEAF AREA INDEX LOCAL THRESHOLDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Canopy hemispherical photography (HP) is widely used to estimate forest structural variables. To achieve good results with HP, a classification algorithm is needed to produce binary images to accurately estimate the gap fraction. Our aim was to develop a local thresholding method for binarizing carefully acquired hemispherical photographs. The method was implemented in the R package “caiman”. Working with photographs of artificial structures and using a linear model, our method turns the cumbersome problem of finding the optimal threshold value into a simpler one, which is estimating the digital number (DN) of the sky. Using hemispherical photographs of a deciduous forest, we compared our method with several standard and state-of-the-art binarization techniques. Our method was as accurate as the best-tested binarization techniques, regardless of the exposure, as long as it was between 0 and 2 stops over the open sky auto-exposure. Moreover, our method did not require knowing the exact relative exposure. Intending to balance accuracy and practicality, we mapped the sky DN using the values extracted from gaps. However, we discussed whether a more accurate but less practical way to map sky DN could provide, along with our method, a new benchmark. Fil: Díaz, Gastón Mauro. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina |
description |
Canopy hemispherical photography (HP) is widely used to estimate forest structural variables. To achieve good results with HP, a classification algorithm is needed to produce binary images to accurately estimate the gap fraction. Our aim was to develop a local thresholding method for binarizing carefully acquired hemispherical photographs. The method was implemented in the R package “caiman”. Working with photographs of artificial structures and using a linear model, our method turns the cumbersome problem of finding the optimal threshold value into a simpler one, which is estimating the digital number (DN) of the sky. Using hemispherical photographs of a deciduous forest, we compared our method with several standard and state-of-the-art binarization techniques. Our method was as accurate as the best-tested binarization techniques, regardless of the exposure, as long as it was between 0 and 2 stops over the open sky auto-exposure. Moreover, our method did not require knowing the exact relative exposure. Intending to balance accuracy and practicality, we mapped the sky DN using the values extracted from gaps. However, we discussed whether a more accurate but less practical way to map sky DN could provide, along with our method, a new benchmark. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99513 Díaz, Gastón Mauro; Lencinas, José Daniel; Model-based local thresholding for canopy hemispherical photography; National Research Council Canada-NRC Research Press; Canadian Journal Of Forest Research; 48; 10; 7-2018; 1204-1216 0045-5067 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99513 |
identifier_str_mv |
Díaz, Gastón Mauro; Lencinas, José Daniel; Model-based local thresholding for canopy hemispherical photography; National Research Council Canada-NRC Research Press; Canadian Journal Of Forest Research; 48; 10; 7-2018; 1204-1216 0045-5067 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nrcresearchpress.com/doi/10.1139/cjfr-2018-0006#.XmvONHJKiUk info:eu-repo/semantics/altIdentifier/doi/10.1139/cjfr-2018-0006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Research Council Canada-NRC Research Press |
publisher.none.fl_str_mv |
National Research Council Canada-NRC Research Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613247343263744 |
score |
13.070432 |