Optimal cycle program of traffic lights with particle swarm optimization

Autores
García Nieto, José Manuel; Olivera, Ana Carolina; Alba, Enrique
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Optimal staging of traffic lights, and in particular optimal light cycle programs, is a crucial task in present day cities with potential benefits in terms of energy consumption, traffic flow management, pedestrian safety, and environmental issues. Nevertheless, very few publications in the current literature tackle this problem by means of automatic intelligent systems, and, when they do, they focus on limited areas with elementary traffic light schedules. In this paper, we propose an optimization approach in which a particle swarm optimizer (PSO) is able to find successful traffic light cycle programs. The solutions obtained are simulated with simulator of urban mobility, a well-known microscopic traffic simulator. For this study, we have tested two large and heterogeneous metropolitan areas with hundreds of traffic lights located in the cities of Bah´ıa Blanca in Argentina (American style) and Malaga in Spain (European style). Our ´ algorithm is shown to obtain efficient traffic light cycle programs for both kinds of cities. In comparison with expertly predefined cycle programs (close to real ones), our PSO achieved quantitative improvements for the two main objectives: 1) the number of vehicles that reach their destination and 2) the overall journey time.
Fil: García Nieto, José Manuel. Universidad de Málaga; España
Fil: Olivera, Ana Carolina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Instituto de Ciencias e Ingenieria de la Computacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alba, Enrique. Universidad de Málaga; España
Materia
Programming Cycles of Traffic Lights
Particle Swarm Optimization
Sumo Simulator of Urban Mobility
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26766

id CONICETDig_ca4761a4463932958feaa5236b9df48a
oai_identifier_str oai:ri.conicet.gov.ar:11336/26766
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal cycle program of traffic lights with particle swarm optimizationGarcía Nieto, José ManuelOlivera, Ana CarolinaAlba, EnriqueProgramming Cycles of Traffic LightsParticle Swarm OptimizationSumo Simulator of Urban Mobilityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Optimal staging of traffic lights, and in particular optimal light cycle programs, is a crucial task in present day cities with potential benefits in terms of energy consumption, traffic flow management, pedestrian safety, and environmental issues. Nevertheless, very few publications in the current literature tackle this problem by means of automatic intelligent systems, and, when they do, they focus on limited areas with elementary traffic light schedules. In this paper, we propose an optimization approach in which a particle swarm optimizer (PSO) is able to find successful traffic light cycle programs. The solutions obtained are simulated with simulator of urban mobility, a well-known microscopic traffic simulator. For this study, we have tested two large and heterogeneous metropolitan areas with hundreds of traffic lights located in the cities of Bah´ıa Blanca in Argentina (American style) and Malaga in Spain (European style). Our ´ algorithm is shown to obtain efficient traffic light cycle programs for both kinds of cities. In comparison with expertly predefined cycle programs (close to real ones), our PSO achieved quantitative improvements for the two main objectives: 1) the number of vehicles that reach their destination and 2) the overall journey time.Fil: García Nieto, José Manuel. Universidad de Málaga; EspañaFil: Olivera, Ana Carolina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Instituto de Ciencias e Ingenieria de la Computacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alba, Enrique. Universidad de Málaga; EspañaInstitute of Electrical and Electronics Engineers2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26766García Nieto, José Manuel ; Olivera, Ana Carolina; Alba, Enrique; Optimal cycle program of traffic lights with particle swarm optimization; Institute of Electrical and Electronics Engineers; Ieee Transactions On Evolutionary Computation; 17; 6; 12-2013; 823-8391089-778XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TEVC.2013.2260755info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6510532/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:20Zoai:ri.conicet.gov.ar:11336/26766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:20.532CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal cycle program of traffic lights with particle swarm optimization
title Optimal cycle program of traffic lights with particle swarm optimization
spellingShingle Optimal cycle program of traffic lights with particle swarm optimization
García Nieto, José Manuel
Programming Cycles of Traffic Lights
Particle Swarm Optimization
Sumo Simulator of Urban Mobility
title_short Optimal cycle program of traffic lights with particle swarm optimization
title_full Optimal cycle program of traffic lights with particle swarm optimization
title_fullStr Optimal cycle program of traffic lights with particle swarm optimization
title_full_unstemmed Optimal cycle program of traffic lights with particle swarm optimization
title_sort Optimal cycle program of traffic lights with particle swarm optimization
dc.creator.none.fl_str_mv García Nieto, José Manuel
Olivera, Ana Carolina
Alba, Enrique
author García Nieto, José Manuel
author_facet García Nieto, José Manuel
Olivera, Ana Carolina
Alba, Enrique
author_role author
author2 Olivera, Ana Carolina
Alba, Enrique
author2_role author
author
dc.subject.none.fl_str_mv Programming Cycles of Traffic Lights
Particle Swarm Optimization
Sumo Simulator of Urban Mobility
topic Programming Cycles of Traffic Lights
Particle Swarm Optimization
Sumo Simulator of Urban Mobility
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Optimal staging of traffic lights, and in particular optimal light cycle programs, is a crucial task in present day cities with potential benefits in terms of energy consumption, traffic flow management, pedestrian safety, and environmental issues. Nevertheless, very few publications in the current literature tackle this problem by means of automatic intelligent systems, and, when they do, they focus on limited areas with elementary traffic light schedules. In this paper, we propose an optimization approach in which a particle swarm optimizer (PSO) is able to find successful traffic light cycle programs. The solutions obtained are simulated with simulator of urban mobility, a well-known microscopic traffic simulator. For this study, we have tested two large and heterogeneous metropolitan areas with hundreds of traffic lights located in the cities of Bah´ıa Blanca in Argentina (American style) and Malaga in Spain (European style). Our ´ algorithm is shown to obtain efficient traffic light cycle programs for both kinds of cities. In comparison with expertly predefined cycle programs (close to real ones), our PSO achieved quantitative improvements for the two main objectives: 1) the number of vehicles that reach their destination and 2) the overall journey time.
Fil: García Nieto, José Manuel. Universidad de Málaga; España
Fil: Olivera, Ana Carolina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Instituto de Ciencias e Ingenieria de la Computacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alba, Enrique. Universidad de Málaga; España
description Optimal staging of traffic lights, and in particular optimal light cycle programs, is a crucial task in present day cities with potential benefits in terms of energy consumption, traffic flow management, pedestrian safety, and environmental issues. Nevertheless, very few publications in the current literature tackle this problem by means of automatic intelligent systems, and, when they do, they focus on limited areas with elementary traffic light schedules. In this paper, we propose an optimization approach in which a particle swarm optimizer (PSO) is able to find successful traffic light cycle programs. The solutions obtained are simulated with simulator of urban mobility, a well-known microscopic traffic simulator. For this study, we have tested two large and heterogeneous metropolitan areas with hundreds of traffic lights located in the cities of Bah´ıa Blanca in Argentina (American style) and Malaga in Spain (European style). Our ´ algorithm is shown to obtain efficient traffic light cycle programs for both kinds of cities. In comparison with expertly predefined cycle programs (close to real ones), our PSO achieved quantitative improvements for the two main objectives: 1) the number of vehicles that reach their destination and 2) the overall journey time.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26766
García Nieto, José Manuel ; Olivera, Ana Carolina; Alba, Enrique; Optimal cycle program of traffic lights with particle swarm optimization; Institute of Electrical and Electronics Engineers; Ieee Transactions On Evolutionary Computation; 17; 6; 12-2013; 823-839
1089-778X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26766
identifier_str_mv García Nieto, José Manuel ; Olivera, Ana Carolina; Alba, Enrique; Optimal cycle program of traffic lights with particle swarm optimization; Institute of Electrical and Electronics Engineers; Ieee Transactions On Evolutionary Computation; 17; 6; 12-2013; 823-839
1089-778X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TEVC.2013.2260755
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6510532/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269851789295616
score 13.13397