Swarm intelligence for traffic light scheduling: Application to real urban areas
- Autores
- García Nieto, José M.; Alba, Enrique; Olivera, Ana Carolina
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Congestion, pollution, security, parking, noise, and many other problems derived from vehicular traffic are present every day in most cities around the world. The growing number of traffic lights that control the vehicular flow requires a complex scheduling, and hence, automatic systems are indispensable nowadays for optimally tackling this task. In this work, we propose a Swarm Intelligence approach to find successful cycle programs of traffic lights. Using a microscopic traffic simulator, the solutions obtained by our algorithm are evaluated in the context of two large and heterogeneous metropolitan areas located in the cities of Málaga and Sevilla (in Spain). In comparison with cycle programs predefined by experts (close to real ones), our proposal obtains significant profits in terms of two main indicators: the number of vehicles that reach their destinations on time and the global trip time.
Fil: García Nieto, José M.. Universidad de Málaga; España
Fil: Alba, Enrique. Universidad de Málaga; España
Fil: Olivera, Ana Carolina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina - Materia
-
CYCLE PROGRAM OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
REALISTIC TRAFFIC INSTANCES
SUMO MICROSCOPIC SIMULATOR OF URBAN MOBILITY
TRAFFIC LIGHT SCHEDULING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192649
Ver los metadatos del registro completo
id |
CONICETDig_6a8f75722631570d5bcc435154ebffee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192649 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Swarm intelligence for traffic light scheduling: Application to real urban areasGarcía Nieto, José M.Alba, EnriqueOlivera, Ana CarolinaCYCLE PROGRAM OPTIMIZATIONPARTICLE SWARM OPTIMIZATIONREALISTIC TRAFFIC INSTANCESSUMO MICROSCOPIC SIMULATOR OF URBAN MOBILITYTRAFFIC LIGHT SCHEDULINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Congestion, pollution, security, parking, noise, and many other problems derived from vehicular traffic are present every day in most cities around the world. The growing number of traffic lights that control the vehicular flow requires a complex scheduling, and hence, automatic systems are indispensable nowadays for optimally tackling this task. In this work, we propose a Swarm Intelligence approach to find successful cycle programs of traffic lights. Using a microscopic traffic simulator, the solutions obtained by our algorithm are evaluated in the context of two large and heterogeneous metropolitan areas located in the cities of Málaga and Sevilla (in Spain). In comparison with cycle programs predefined by experts (close to real ones), our proposal obtains significant profits in terms of two main indicators: the number of vehicles that reach their destinations on time and the global trip time.Fil: García Nieto, José M.. Universidad de Málaga; EspañaFil: Alba, Enrique. Universidad de Málaga; EspañaFil: Olivera, Ana Carolina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaPergamon-Elsevier Science Ltd2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192649García Nieto, José M.; Alba, Enrique; Olivera, Ana Carolina; Swarm intelligence for traffic light scheduling: Application to real urban areas; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 25; 2; 3-2012; 274-2830952-1976CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.journals.elsevier.com/engineering-applications-of-artificial-intelligence/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engappai.2011.04.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:04Zoai:ri.conicet.gov.ar:11336/192649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:04.75CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
title |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
spellingShingle |
Swarm intelligence for traffic light scheduling: Application to real urban areas García Nieto, José M. CYCLE PROGRAM OPTIMIZATION PARTICLE SWARM OPTIMIZATION REALISTIC TRAFFIC INSTANCES SUMO MICROSCOPIC SIMULATOR OF URBAN MOBILITY TRAFFIC LIGHT SCHEDULING |
title_short |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
title_full |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
title_fullStr |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
title_full_unstemmed |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
title_sort |
Swarm intelligence for traffic light scheduling: Application to real urban areas |
dc.creator.none.fl_str_mv |
García Nieto, José M. Alba, Enrique Olivera, Ana Carolina |
author |
García Nieto, José M. |
author_facet |
García Nieto, José M. Alba, Enrique Olivera, Ana Carolina |
author_role |
author |
author2 |
Alba, Enrique Olivera, Ana Carolina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CYCLE PROGRAM OPTIMIZATION PARTICLE SWARM OPTIMIZATION REALISTIC TRAFFIC INSTANCES SUMO MICROSCOPIC SIMULATOR OF URBAN MOBILITY TRAFFIC LIGHT SCHEDULING |
topic |
CYCLE PROGRAM OPTIMIZATION PARTICLE SWARM OPTIMIZATION REALISTIC TRAFFIC INSTANCES SUMO MICROSCOPIC SIMULATOR OF URBAN MOBILITY TRAFFIC LIGHT SCHEDULING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Congestion, pollution, security, parking, noise, and many other problems derived from vehicular traffic are present every day in most cities around the world. The growing number of traffic lights that control the vehicular flow requires a complex scheduling, and hence, automatic systems are indispensable nowadays for optimally tackling this task. In this work, we propose a Swarm Intelligence approach to find successful cycle programs of traffic lights. Using a microscopic traffic simulator, the solutions obtained by our algorithm are evaluated in the context of two large and heterogeneous metropolitan areas located in the cities of Málaga and Sevilla (in Spain). In comparison with cycle programs predefined by experts (close to real ones), our proposal obtains significant profits in terms of two main indicators: the number of vehicles that reach their destinations on time and the global trip time. Fil: García Nieto, José M.. Universidad de Málaga; España Fil: Alba, Enrique. Universidad de Málaga; España Fil: Olivera, Ana Carolina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina |
description |
Congestion, pollution, security, parking, noise, and many other problems derived from vehicular traffic are present every day in most cities around the world. The growing number of traffic lights that control the vehicular flow requires a complex scheduling, and hence, automatic systems are indispensable nowadays for optimally tackling this task. In this work, we propose a Swarm Intelligence approach to find successful cycle programs of traffic lights. Using a microscopic traffic simulator, the solutions obtained by our algorithm are evaluated in the context of two large and heterogeneous metropolitan areas located in the cities of Málaga and Sevilla (in Spain). In comparison with cycle programs predefined by experts (close to real ones), our proposal obtains significant profits in terms of two main indicators: the number of vehicles that reach their destinations on time and the global trip time. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192649 García Nieto, José M.; Alba, Enrique; Olivera, Ana Carolina; Swarm intelligence for traffic light scheduling: Application to real urban areas; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 25; 2; 3-2012; 274-283 0952-1976 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192649 |
identifier_str_mv |
García Nieto, José M.; Alba, Enrique; Olivera, Ana Carolina; Swarm intelligence for traffic light scheduling: Application to real urban areas; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 25; 2; 3-2012; 274-283 0952-1976 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.journals.elsevier.com/engineering-applications-of-artificial-intelligence/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engappai.2011.04.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268707918708736 |
score |
13.13397 |