Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm
- Autores
- Nesmachnow, Sergio; Massobrio, Renzo; Arreche, Efraín; Mumford, Christine; Olivera, Ana Carolina; Vidal, Pablo Javier; Tchernykh, Andrei
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article presents a parallel evolutionary algorithm for public transport optimization by synchronizing traffic lights in the context of Bus Rapid Transit systems. The related optimization problem is NP-hard, so exact computational methods are not useful to solve real-world instances. Our research introduces a parallel evolutionary algorithm to efficiently configure and synchronize traffic lights and improve the average speed of buses and other vehicles. The Bus Rapid Transit on Garzón Avenue (Montevideo, Uruguay) is used as a case study. This is an interesting complex urban scenario due to the number of crossings, streets, and traffic lights in the zone. The experimental analysis compares the numerical results computed by the parallel evolutionary algorithm with a scenario that models the current reality. The results show that the proposed evolutionary algorithm achieves better quality of service when compared with the current reality, improving up to 15.3% the average bus speed and 24.8% the average speed of other vehicles. A multiobjective optimization analysis also demonstrates that additional improvements can be achieved by assigning different priorities to buses and other vehicles. In addition, further improvements can be achieved on a modified scenario simply by deleting a few bus stops and changing some traffic lights rules. The benefits of using a parallel solver are also highlighted, as the parallel version is able to accelerate the execution times up to 26.9× when compared with the sequential version.
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
Fil: Massobrio, Renzo. Universidad de la República; Uruguay
Fil: Arreche, Efraín. Universidad de la República; Uruguay
Fil: Mumford, Christine. Cardiff University; Reino Unido
Fil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Tchernykh, Andrei. Cicese Research Center; México - Materia
-
BUS RAPID TRANSIT
EVOLUTIONARY ALGORITHMS
TRAFFIC LIGHTS SYNCHRONIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/174898
Ver los metadatos del registro completo
id |
CONICETDig_c91776cfbb8373f27195d57ddb8234a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/174898 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithmNesmachnow, SergioMassobrio, RenzoArreche, EfraínMumford, ChristineOlivera, Ana CarolinaVidal, Pablo JavierTchernykh, AndreiBUS RAPID TRANSITEVOLUTIONARY ALGORITHMSTRAFFIC LIGHTS SYNCHRONIZATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This article presents a parallel evolutionary algorithm for public transport optimization by synchronizing traffic lights in the context of Bus Rapid Transit systems. The related optimization problem is NP-hard, so exact computational methods are not useful to solve real-world instances. Our research introduces a parallel evolutionary algorithm to efficiently configure and synchronize traffic lights and improve the average speed of buses and other vehicles. The Bus Rapid Transit on Garzón Avenue (Montevideo, Uruguay) is used as a case study. This is an interesting complex urban scenario due to the number of crossings, streets, and traffic lights in the zone. The experimental analysis compares the numerical results computed by the parallel evolutionary algorithm with a scenario that models the current reality. The results show that the proposed evolutionary algorithm achieves better quality of service when compared with the current reality, improving up to 15.3% the average bus speed and 24.8% the average speed of other vehicles. A multiobjective optimization analysis also demonstrates that additional improvements can be achieved by assigning different priorities to buses and other vehicles. In addition, further improvements can be achieved on a modified scenario simply by deleting a few bus stops and changing some traffic lights rules. The benefits of using a parallel solver are also highlighted, as the parallel version is able to accelerate the execution times up to 26.9× when compared with the sequential version.Fil: Nesmachnow, Sergio. Universidad de la República; UruguayFil: Massobrio, Renzo. Universidad de la República; UruguayFil: Arreche, Efraín. Universidad de la República; UruguayFil: Mumford, Christine. Cardiff University; Reino UnidoFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Tchernykh, Andrei. Cicese Research Center; MéxicoElsevier2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174898Nesmachnow, Sergio; Massobrio, Renzo; Arreche, Efraín; Mumford, Christine; Olivera, Ana Carolina; et al.; Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm; Elsevier; International Journal of Transportation Science and Technology; 8; 1; 3-2019; 53-672046-0430CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2046043018300339info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijtst.2018.10.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:17Zoai:ri.conicet.gov.ar:11336/174898instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:17.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
title |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
spellingShingle |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm Nesmachnow, Sergio BUS RAPID TRANSIT EVOLUTIONARY ALGORITHMS TRAFFIC LIGHTS SYNCHRONIZATION |
title_short |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
title_full |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
title_fullStr |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
title_full_unstemmed |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
title_sort |
Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm |
dc.creator.none.fl_str_mv |
Nesmachnow, Sergio Massobrio, Renzo Arreche, Efraín Mumford, Christine Olivera, Ana Carolina Vidal, Pablo Javier Tchernykh, Andrei |
author |
Nesmachnow, Sergio |
author_facet |
Nesmachnow, Sergio Massobrio, Renzo Arreche, Efraín Mumford, Christine Olivera, Ana Carolina Vidal, Pablo Javier Tchernykh, Andrei |
author_role |
author |
author2 |
Massobrio, Renzo Arreche, Efraín Mumford, Christine Olivera, Ana Carolina Vidal, Pablo Javier Tchernykh, Andrei |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
BUS RAPID TRANSIT EVOLUTIONARY ALGORITHMS TRAFFIC LIGHTS SYNCHRONIZATION |
topic |
BUS RAPID TRANSIT EVOLUTIONARY ALGORITHMS TRAFFIC LIGHTS SYNCHRONIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This article presents a parallel evolutionary algorithm for public transport optimization by synchronizing traffic lights in the context of Bus Rapid Transit systems. The related optimization problem is NP-hard, so exact computational methods are not useful to solve real-world instances. Our research introduces a parallel evolutionary algorithm to efficiently configure and synchronize traffic lights and improve the average speed of buses and other vehicles. The Bus Rapid Transit on Garzón Avenue (Montevideo, Uruguay) is used as a case study. This is an interesting complex urban scenario due to the number of crossings, streets, and traffic lights in the zone. The experimental analysis compares the numerical results computed by the parallel evolutionary algorithm with a scenario that models the current reality. The results show that the proposed evolutionary algorithm achieves better quality of service when compared with the current reality, improving up to 15.3% the average bus speed and 24.8% the average speed of other vehicles. A multiobjective optimization analysis also demonstrates that additional improvements can be achieved by assigning different priorities to buses and other vehicles. In addition, further improvements can be achieved on a modified scenario simply by deleting a few bus stops and changing some traffic lights rules. The benefits of using a parallel solver are also highlighted, as the parallel version is able to accelerate the execution times up to 26.9× when compared with the sequential version. Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay Fil: Massobrio, Renzo. Universidad de la República; Uruguay Fil: Arreche, Efraín. Universidad de la República; Uruguay Fil: Mumford, Christine. Cardiff University; Reino Unido Fil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Tchernykh, Andrei. Cicese Research Center; México |
description |
This article presents a parallel evolutionary algorithm for public transport optimization by synchronizing traffic lights in the context of Bus Rapid Transit systems. The related optimization problem is NP-hard, so exact computational methods are not useful to solve real-world instances. Our research introduces a parallel evolutionary algorithm to efficiently configure and synchronize traffic lights and improve the average speed of buses and other vehicles. The Bus Rapid Transit on Garzón Avenue (Montevideo, Uruguay) is used as a case study. This is an interesting complex urban scenario due to the number of crossings, streets, and traffic lights in the zone. The experimental analysis compares the numerical results computed by the parallel evolutionary algorithm with a scenario that models the current reality. The results show that the proposed evolutionary algorithm achieves better quality of service when compared with the current reality, improving up to 15.3% the average bus speed and 24.8% the average speed of other vehicles. A multiobjective optimization analysis also demonstrates that additional improvements can be achieved by assigning different priorities to buses and other vehicles. In addition, further improvements can be achieved on a modified scenario simply by deleting a few bus stops and changing some traffic lights rules. The benefits of using a parallel solver are also highlighted, as the parallel version is able to accelerate the execution times up to 26.9× when compared with the sequential version. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/174898 Nesmachnow, Sergio; Massobrio, Renzo; Arreche, Efraín; Mumford, Christine; Olivera, Ana Carolina; et al.; Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm; Elsevier; International Journal of Transportation Science and Technology; 8; 1; 3-2019; 53-67 2046-0430 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/174898 |
identifier_str_mv |
Nesmachnow, Sergio; Massobrio, Renzo; Arreche, Efraín; Mumford, Christine; Olivera, Ana Carolina; et al.; Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm; Elsevier; International Journal of Transportation Science and Technology; 8; 1; 3-2019; 53-67 2046-0430 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2046043018300339 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijtst.2018.10.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269396279492608 |
score |
13.13397 |