Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions

Autores
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the decay/growth rates in all Lp norms of solutions to an inhomogeneousnonlocal heat equation in RN involving a Caputo -time derivative and a power of the Laplacianwhen the dimension is large, N > 4. Rates depend strongly on the space-time scale andon the time behavior of the spatial L1 norm of the forcing term.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
CAPUTO DERIVATIVE
FRACTIONAL LAPLACIAN
FULLY NONLOCAL HEAT EQUATIONS
HEAT EQUATION WITH NONLOCAL TIME DERIVATIVE
LARGE-TIME BEHAVIOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167085

id CONICETDig_c9f3da0e1cbaa23f0aa0fb8176e79c9a
oai_identifier_str oai:ri.conicet.gov.ar:11336/167085
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensionsCortázar, CarmenQuirós, FernandoWolanski, Noemi IreneCAPUTO DERIVATIVEFRACTIONAL LAPLACIANFULLY NONLOCAL HEAT EQUATIONSHEAT EQUATION WITH NONLOCAL TIME DERIVATIVELARGE-TIME BEHAVIORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the decay/growth rates in all Lp norms of solutions to an inhomogeneousnonlocal heat equation in RN involving a Caputo -time derivative and a power of the Laplacianwhen the dimension is large, N > 4. Rates depend strongly on the space-time scale andon the time behavior of the spatial L1 norm of the forcing term.Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autónoma de Madrid; EspañaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Institute of Mathematical Sciences2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167085Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions; American Institute of Mathematical Sciences; Mathematics In Engineering; 4; 3; 7-2021; 1-172640-3501CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/mine.2022022info:eu-repo/semantics/altIdentifier/url/https://www.aimspress.com/article/doi/10.3934/mine.2022022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:26Zoai:ri.conicet.gov.ar:11336/167085instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:26.396CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
title Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
spellingShingle Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
Cortázar, Carmen
CAPUTO DERIVATIVE
FRACTIONAL LAPLACIAN
FULLY NONLOCAL HEAT EQUATIONS
HEAT EQUATION WITH NONLOCAL TIME DERIVATIVE
LARGE-TIME BEHAVIOR
title_short Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
title_full Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
title_fullStr Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
title_full_unstemmed Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
title_sort Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions
dc.creator.none.fl_str_mv Cortázar, Carmen
Quirós, Fernando
Wolanski, Noemi Irene
author Cortázar, Carmen
author_facet Cortázar, Carmen
Quirós, Fernando
Wolanski, Noemi Irene
author_role author
author2 Quirós, Fernando
Wolanski, Noemi Irene
author2_role author
author
dc.subject.none.fl_str_mv CAPUTO DERIVATIVE
FRACTIONAL LAPLACIAN
FULLY NONLOCAL HEAT EQUATIONS
HEAT EQUATION WITH NONLOCAL TIME DERIVATIVE
LARGE-TIME BEHAVIOR
topic CAPUTO DERIVATIVE
FRACTIONAL LAPLACIAN
FULLY NONLOCAL HEAT EQUATIONS
HEAT EQUATION WITH NONLOCAL TIME DERIVATIVE
LARGE-TIME BEHAVIOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the decay/growth rates in all Lp norms of solutions to an inhomogeneousnonlocal heat equation in RN involving a Caputo -time derivative and a power of the Laplacianwhen the dimension is large, N > 4. Rates depend strongly on the space-time scale andon the time behavior of the spatial L1 norm of the forcing term.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We study the decay/growth rates in all Lp norms of solutions to an inhomogeneousnonlocal heat equation in RN involving a Caputo -time derivative and a power of the Laplacianwhen the dimension is large, N > 4. Rates depend strongly on the space-time scale andon the time behavior of the spatial L1 norm of the forcing term.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167085
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions; American Institute of Mathematical Sciences; Mathematics In Engineering; 4; 3; 7-2021; 1-17
2640-3501
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167085
identifier_str_mv Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions; American Institute of Mathematical Sciences; Mathematics In Engineering; 4; 3; 7-2021; 1-17
2640-3501
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3934/mine.2022022
info:eu-repo/semantics/altIdentifier/url/https://www.aimspress.com/article/doi/10.3934/mine.2022022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782314491674624
score 12.982451