Predicting protein targets for drug-like compounds using transcriptomics

Autores
Pabon, Nicolas; Xia, Yan; Estabrooks, Samuel K.; Ye, Zhaofeng; Herbrand, Amanda K.; Süß, Evelyn; Biondi, Ricardo Miguel; Assimon, Victoria A.; Gestwicki, Jason E.; Brodsky, Jeffrey L.; Camacho, Carlos; Bar Joseph, Ziv
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An expanded chemical space is essential for improved identification of small molecules for emerging therapeutic targets. However, the identification of targets for novel compounds is biased towards the synthesis of known scaffolds that bind familiar protein families, limiting the exploration of chemical space. To change this paradigm, we validated a new pipeline that identifies small molecule-protein interactions and works even for compounds lacking similarity to known drugs. Based on differential mRNA profiles in multiple cell types exposed to drugs and in which gene knockdowns (KD) were conducted, we showed that drugs induce gene regulatory networks that correlate with those produced after silencing protein-coding genes. Next, we applied supervised machine learning to exploit drug-KD signature correlations and enriched our predictions using an orthogonal structure-based screen. As a proof-of-principle for this regimen, top-10/top-100 target prediction accuracies of 26% and 41%, respectively, were achieved on a validation of set 152 FDA-approved drugs and 3104 potential targets. We then predicted targets for 1680 compounds and validated chemical interactors with four targets that have proven difficult to chemically modulate, including non-covalent inhibitors of HRAS and KRAS. Importantly, drug-target interactions manifest as gene expression correlations between drug treatment and both target gene KD and KD of genes that act up- or down-stream of the target, even for relatively weak binders. These correlations provide new insights on the cellular response of disrupting protein interactions and highlight the complex genetic phenotypes of drug treatment. With further refinement, our pipeline may accelerate the identification and development of novel chemical classes by screening compound-target interactions.
Fil: Pabon, Nicolas. University of Pittsburgh; Estados Unidos
Fil: Xia, Yan. University of Carnegie Mellon; Estados Unidos
Fil: Estabrooks, Samuel K.. University of Pittsburgh; Estados Unidos
Fil: Ye, Zhaofeng. Tsinghua University; China
Fil: Herbrand, Amanda K.. Goethe Universitat Frankfurt; Alemania
Fil: Süß, Evelyn. Goethe Universitat Frankfurt; Alemania
Fil: Biondi, Ricardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Goethe Universitat Frankfurt; Alemania
Fil: Assimon, Victoria A.. University of California; Estados Unidos
Fil: Gestwicki, Jason E.. University of California; Estados Unidos
Fil: Brodsky, Jeffrey L.. University of Pittsburgh; Estados Unidos
Fil: Camacho, Carlos. University of Pittsburgh; Estados Unidos
Fil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados Unidos
Materia
small compound
target prediction
transcriptomics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87626

id CONICETDig_c9011df64a41116d7c52122becde222c
oai_identifier_str oai:ri.conicet.gov.ar:11336/87626
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Predicting protein targets for drug-like compounds using transcriptomicsPabon, NicolasXia, YanEstabrooks, Samuel K.Ye, ZhaofengHerbrand, Amanda K.Süß, EvelynBiondi, Ricardo MiguelAssimon, Victoria A.Gestwicki, Jason E.Brodsky, Jeffrey L.Camacho, CarlosBar Joseph, Zivsmall compoundtarget predictiontranscriptomicshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1An expanded chemical space is essential for improved identification of small molecules for emerging therapeutic targets. However, the identification of targets for novel compounds is biased towards the synthesis of known scaffolds that bind familiar protein families, limiting the exploration of chemical space. To change this paradigm, we validated a new pipeline that identifies small molecule-protein interactions and works even for compounds lacking similarity to known drugs. Based on differential mRNA profiles in multiple cell types exposed to drugs and in which gene knockdowns (KD) were conducted, we showed that drugs induce gene regulatory networks that correlate with those produced after silencing protein-coding genes. Next, we applied supervised machine learning to exploit drug-KD signature correlations and enriched our predictions using an orthogonal structure-based screen. As a proof-of-principle for this regimen, top-10/top-100 target prediction accuracies of 26% and 41%, respectively, were achieved on a validation of set 152 FDA-approved drugs and 3104 potential targets. We then predicted targets for 1680 compounds and validated chemical interactors with four targets that have proven difficult to chemically modulate, including non-covalent inhibitors of HRAS and KRAS. Importantly, drug-target interactions manifest as gene expression correlations between drug treatment and both target gene KD and KD of genes that act up- or down-stream of the target, even for relatively weak binders. These correlations provide new insights on the cellular response of disrupting protein interactions and highlight the complex genetic phenotypes of drug treatment. With further refinement, our pipeline may accelerate the identification and development of novel chemical classes by screening compound-target interactions.Fil: Pabon, Nicolas. University of Pittsburgh; Estados UnidosFil: Xia, Yan. University of Carnegie Mellon; Estados UnidosFil: Estabrooks, Samuel K.. University of Pittsburgh; Estados UnidosFil: Ye, Zhaofeng. Tsinghua University; ChinaFil: Herbrand, Amanda K.. Goethe Universitat Frankfurt; AlemaniaFil: Süß, Evelyn. Goethe Universitat Frankfurt; AlemaniaFil: Biondi, Ricardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Goethe Universitat Frankfurt; AlemaniaFil: Assimon, Victoria A.. University of California; Estados UnidosFil: Gestwicki, Jason E.. University of California; Estados UnidosFil: Brodsky, Jeffrey L.. University of Pittsburgh; Estados UnidosFil: Camacho, Carlos. University of Pittsburgh; Estados UnidosFil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados UnidosPublic Library of Science2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87626Pabon, Nicolas; Xia, Yan; Estabrooks, Samuel K.; Ye, Zhaofeng; Herbrand, Amanda K.; et al.; Predicting protein targets for drug-like compounds using transcriptomics; Public Library of Science; Plos Computational Biology; 14; 12; 12-2018; 1-241553-734XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1006651info:eu-repo/semantics/altIdentifier/url/journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006651info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:49:18Zoai:ri.conicet.gov.ar:11336/87626instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:49:18.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Predicting protein targets for drug-like compounds using transcriptomics
title Predicting protein targets for drug-like compounds using transcriptomics
spellingShingle Predicting protein targets for drug-like compounds using transcriptomics
Pabon, Nicolas
small compound
target prediction
transcriptomics
title_short Predicting protein targets for drug-like compounds using transcriptomics
title_full Predicting protein targets for drug-like compounds using transcriptomics
title_fullStr Predicting protein targets for drug-like compounds using transcriptomics
title_full_unstemmed Predicting protein targets for drug-like compounds using transcriptomics
title_sort Predicting protein targets for drug-like compounds using transcriptomics
dc.creator.none.fl_str_mv Pabon, Nicolas
Xia, Yan
Estabrooks, Samuel K.
Ye, Zhaofeng
Herbrand, Amanda K.
Süß, Evelyn
Biondi, Ricardo Miguel
Assimon, Victoria A.
Gestwicki, Jason E.
Brodsky, Jeffrey L.
Camacho, Carlos
Bar Joseph, Ziv
author Pabon, Nicolas
author_facet Pabon, Nicolas
Xia, Yan
Estabrooks, Samuel K.
Ye, Zhaofeng
Herbrand, Amanda K.
Süß, Evelyn
Biondi, Ricardo Miguel
Assimon, Victoria A.
Gestwicki, Jason E.
Brodsky, Jeffrey L.
Camacho, Carlos
Bar Joseph, Ziv
author_role author
author2 Xia, Yan
Estabrooks, Samuel K.
Ye, Zhaofeng
Herbrand, Amanda K.
Süß, Evelyn
Biondi, Ricardo Miguel
Assimon, Victoria A.
Gestwicki, Jason E.
Brodsky, Jeffrey L.
Camacho, Carlos
Bar Joseph, Ziv
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv small compound
target prediction
transcriptomics
topic small compound
target prediction
transcriptomics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An expanded chemical space is essential for improved identification of small molecules for emerging therapeutic targets. However, the identification of targets for novel compounds is biased towards the synthesis of known scaffolds that bind familiar protein families, limiting the exploration of chemical space. To change this paradigm, we validated a new pipeline that identifies small molecule-protein interactions and works even for compounds lacking similarity to known drugs. Based on differential mRNA profiles in multiple cell types exposed to drugs and in which gene knockdowns (KD) were conducted, we showed that drugs induce gene regulatory networks that correlate with those produced after silencing protein-coding genes. Next, we applied supervised machine learning to exploit drug-KD signature correlations and enriched our predictions using an orthogonal structure-based screen. As a proof-of-principle for this regimen, top-10/top-100 target prediction accuracies of 26% and 41%, respectively, were achieved on a validation of set 152 FDA-approved drugs and 3104 potential targets. We then predicted targets for 1680 compounds and validated chemical interactors with four targets that have proven difficult to chemically modulate, including non-covalent inhibitors of HRAS and KRAS. Importantly, drug-target interactions manifest as gene expression correlations between drug treatment and both target gene KD and KD of genes that act up- or down-stream of the target, even for relatively weak binders. These correlations provide new insights on the cellular response of disrupting protein interactions and highlight the complex genetic phenotypes of drug treatment. With further refinement, our pipeline may accelerate the identification and development of novel chemical classes by screening compound-target interactions.
Fil: Pabon, Nicolas. University of Pittsburgh; Estados Unidos
Fil: Xia, Yan. University of Carnegie Mellon; Estados Unidos
Fil: Estabrooks, Samuel K.. University of Pittsburgh; Estados Unidos
Fil: Ye, Zhaofeng. Tsinghua University; China
Fil: Herbrand, Amanda K.. Goethe Universitat Frankfurt; Alemania
Fil: Süß, Evelyn. Goethe Universitat Frankfurt; Alemania
Fil: Biondi, Ricardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Goethe Universitat Frankfurt; Alemania
Fil: Assimon, Victoria A.. University of California; Estados Unidos
Fil: Gestwicki, Jason E.. University of California; Estados Unidos
Fil: Brodsky, Jeffrey L.. University of Pittsburgh; Estados Unidos
Fil: Camacho, Carlos. University of Pittsburgh; Estados Unidos
Fil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados Unidos
description An expanded chemical space is essential for improved identification of small molecules for emerging therapeutic targets. However, the identification of targets for novel compounds is biased towards the synthesis of known scaffolds that bind familiar protein families, limiting the exploration of chemical space. To change this paradigm, we validated a new pipeline that identifies small molecule-protein interactions and works even for compounds lacking similarity to known drugs. Based on differential mRNA profiles in multiple cell types exposed to drugs and in which gene knockdowns (KD) were conducted, we showed that drugs induce gene regulatory networks that correlate with those produced after silencing protein-coding genes. Next, we applied supervised machine learning to exploit drug-KD signature correlations and enriched our predictions using an orthogonal structure-based screen. As a proof-of-principle for this regimen, top-10/top-100 target prediction accuracies of 26% and 41%, respectively, were achieved on a validation of set 152 FDA-approved drugs and 3104 potential targets. We then predicted targets for 1680 compounds and validated chemical interactors with four targets that have proven difficult to chemically modulate, including non-covalent inhibitors of HRAS and KRAS. Importantly, drug-target interactions manifest as gene expression correlations between drug treatment and both target gene KD and KD of genes that act up- or down-stream of the target, even for relatively weak binders. These correlations provide new insights on the cellular response of disrupting protein interactions and highlight the complex genetic phenotypes of drug treatment. With further refinement, our pipeline may accelerate the identification and development of novel chemical classes by screening compound-target interactions.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87626
Pabon, Nicolas; Xia, Yan; Estabrooks, Samuel K.; Ye, Zhaofeng; Herbrand, Amanda K.; et al.; Predicting protein targets for drug-like compounds using transcriptomics; Public Library of Science; Plos Computational Biology; 14; 12; 12-2018; 1-24
1553-734X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87626
identifier_str_mv Pabon, Nicolas; Xia, Yan; Estabrooks, Samuel K.; Ye, Zhaofeng; Herbrand, Amanda K.; et al.; Predicting protein targets for drug-like compounds using transcriptomics; Public Library of Science; Plos Computational Biology; 14; 12; 12-2018; 1-24
1553-734X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1006651
info:eu-repo/semantics/altIdentifier/url/journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006651
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849872721167515648
score 13.011256