A multilayer network approach for guiding drug repositioning in neglected diseases

Autores
Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Fernandez Aguero, Maria Jose
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.
Fil: Berenstein, Ariel José. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina
Fil: Magariños, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Chernomoretz, Ariel. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina
Fil: Fernandez Aguero, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Materia
COMPLEX NETWORKS
DRUG DISCOVERY
NEGLECTED DISEASES
TARGET PRIORITIZATION
COMPOUND DEORPHANIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/45771

id CONICETDig_d4c1babd6faa766aa41c87599e83edc9
oai_identifier_str oai:ri.conicet.gov.ar:11336/45771
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A multilayer network approach for guiding drug repositioning in neglected diseasesBerenstein, Ariel JoséMagariños, María PaulaChernomoretz, ArielFernandez Aguero, Maria JoseCOMPLEX NETWORKSDRUG DISCOVERYNEGLECTED DISEASESTARGET PRIORITIZATIONCOMPOUND DEORPHANIZATIONhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.Fil: Berenstein, Ariel José. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Magariños, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Chernomoretz, Ariel. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Fernandez Aguero, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaPublic Library of Science2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45771Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Fernandez Aguero, Maria Jose; A multilayer network approach for guiding drug repositioning in neglected diseases; Public Library of Science; Neglected Tropical Diseases; 10; 1; 1-2016; 1-331935-2735CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pntd.0004300info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004300info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:46Zoai:ri.conicet.gov.ar:11336/45771instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:46.534CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A multilayer network approach for guiding drug repositioning in neglected diseases
title A multilayer network approach for guiding drug repositioning in neglected diseases
spellingShingle A multilayer network approach for guiding drug repositioning in neglected diseases
Berenstein, Ariel José
COMPLEX NETWORKS
DRUG DISCOVERY
NEGLECTED DISEASES
TARGET PRIORITIZATION
COMPOUND DEORPHANIZATION
title_short A multilayer network approach for guiding drug repositioning in neglected diseases
title_full A multilayer network approach for guiding drug repositioning in neglected diseases
title_fullStr A multilayer network approach for guiding drug repositioning in neglected diseases
title_full_unstemmed A multilayer network approach for guiding drug repositioning in neglected diseases
title_sort A multilayer network approach for guiding drug repositioning in neglected diseases
dc.creator.none.fl_str_mv Berenstein, Ariel José
Magariños, María Paula
Chernomoretz, Ariel
Fernandez Aguero, Maria Jose
author Berenstein, Ariel José
author_facet Berenstein, Ariel José
Magariños, María Paula
Chernomoretz, Ariel
Fernandez Aguero, Maria Jose
author_role author
author2 Magariños, María Paula
Chernomoretz, Ariel
Fernandez Aguero, Maria Jose
author2_role author
author
author
dc.subject.none.fl_str_mv COMPLEX NETWORKS
DRUG DISCOVERY
NEGLECTED DISEASES
TARGET PRIORITIZATION
COMPOUND DEORPHANIZATION
topic COMPLEX NETWORKS
DRUG DISCOVERY
NEGLECTED DISEASES
TARGET PRIORITIZATION
COMPOUND DEORPHANIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.
Fil: Berenstein, Ariel José. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina
Fil: Magariños, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Chernomoretz, Ariel. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina
Fil: Fernandez Aguero, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
description Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/45771
Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Fernandez Aguero, Maria Jose; A multilayer network approach for guiding drug repositioning in neglected diseases; Public Library of Science; Neglected Tropical Diseases; 10; 1; 1-2016; 1-33
1935-2735
CONICET Digital
CONICET
url http://hdl.handle.net/11336/45771
identifier_str_mv Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Fernandez Aguero, Maria Jose; A multilayer network approach for guiding drug repositioning in neglected diseases; Public Library of Science; Neglected Tropical Diseases; 10; 1; 1-2016; 1-33
1935-2735
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pntd.0004300
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004300
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268687333064704
score 13.13397