Integrating Social Relationships and Personality into MAS-Based Group Recommendations

Autores
Monteserin, Ariel José; Madsen, Daiana Elin; Godoy, Daniela Lis; Schiaffino, Silvia Noemi
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recommender systems aim to predict the preferences of users and suggest items of interest to them in various domains. While traditional recommendation techniques consider users as individuals, some approaches aim to satisfy the needs of a group of people. Multi-agent systems can be used to develop such recommendations, where multiple intelligent agents interact with each other to achieve a common goal, i.e., deciding which item to recommend. Particularly, negotiation techniques can be used to find a decision that aims at maximizing the satisfaction of all group members. The proposed approach introduces a multi-agent recommender system for a group of users by considering their personality traits, relationships and social interactions during the negotiation process that leads to the generation of recommendations. While traditional recommendation techniques do not take into account the effects of personality traits and relationships between individuals, our approach demonstrates that personality traits, especially personality types in the context of conflict management, and social relationships can significantly impact on the group recommendation. The results indicate that the opinion of an individual can be influenced when she is part of a group that cooperates towards a shared goal. Overall, the proposed approach shows that recommender systems can benefit from considering that factors. This work contributes to understanding the impact of personality traits and social relationships on group recommendations and suggests potential directions for future research.
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Madsen, Daiana Elin. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
GROUP RECOMMENDER SYSTEMS
MULTI-AGENT SYSTEMS
NEGOTIATION
PERSONALITY TRAITS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/254373

id CONICETDig_6c0be9da9e7890f28aebd73171a43e17
oai_identifier_str oai:ri.conicet.gov.ar:11336/254373
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Integrating Social Relationships and Personality into MAS-Based Group RecommendationsMonteserin, Ariel JoséMadsen, Daiana ElinGodoy, Daniela LisSchiaffino, Silvia NoemiGROUP RECOMMENDER SYSTEMSMULTI-AGENT SYSTEMSNEGOTIATIONPERSONALITY TRAITShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recommender systems aim to predict the preferences of users and suggest items of interest to them in various domains. While traditional recommendation techniques consider users as individuals, some approaches aim to satisfy the needs of a group of people. Multi-agent systems can be used to develop such recommendations, where multiple intelligent agents interact with each other to achieve a common goal, i.e., deciding which item to recommend. Particularly, negotiation techniques can be used to find a decision that aims at maximizing the satisfaction of all group members. The proposed approach introduces a multi-agent recommender system for a group of users by considering their personality traits, relationships and social interactions during the negotiation process that leads to the generation of recommendations. While traditional recommendation techniques do not take into account the effects of personality traits and relationships between individuals, our approach demonstrates that personality traits, especially personality types in the context of conflict management, and social relationships can significantly impact on the group recommendation. The results indicate that the opinion of an individual can be influenced when she is part of a group that cooperates towards a shared goal. Overall, the proposed approach shows that recommender systems can benefit from considering that factors. This work contributes to understanding the impact of personality traits and social relationships on group recommendations and suggests potential directions for future research.Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Madsen, Daiana Elin. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaMDPI2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/254373Monteserin, Ariel José; Madsen, Daiana Elin; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Integrating Social Relationships and Personality into MAS-Based Group Recommendations; MDPI; Big Data and Cognitive Computing; 9; 1; 12-2024; 1-212504-2289CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2504-2289/9/1/1info:eu-repo/semantics/altIdentifier/doi/10.3390/bdcc9010001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:16Zoai:ri.conicet.gov.ar:11336/254373instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:16.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Integrating Social Relationships and Personality into MAS-Based Group Recommendations
title Integrating Social Relationships and Personality into MAS-Based Group Recommendations
spellingShingle Integrating Social Relationships and Personality into MAS-Based Group Recommendations
Monteserin, Ariel José
GROUP RECOMMENDER SYSTEMS
MULTI-AGENT SYSTEMS
NEGOTIATION
PERSONALITY TRAITS
title_short Integrating Social Relationships and Personality into MAS-Based Group Recommendations
title_full Integrating Social Relationships and Personality into MAS-Based Group Recommendations
title_fullStr Integrating Social Relationships and Personality into MAS-Based Group Recommendations
title_full_unstemmed Integrating Social Relationships and Personality into MAS-Based Group Recommendations
title_sort Integrating Social Relationships and Personality into MAS-Based Group Recommendations
dc.creator.none.fl_str_mv Monteserin, Ariel José
Madsen, Daiana Elin
Godoy, Daniela Lis
Schiaffino, Silvia Noemi
author Monteserin, Ariel José
author_facet Monteserin, Ariel José
Madsen, Daiana Elin
Godoy, Daniela Lis
Schiaffino, Silvia Noemi
author_role author
author2 Madsen, Daiana Elin
Godoy, Daniela Lis
Schiaffino, Silvia Noemi
author2_role author
author
author
dc.subject.none.fl_str_mv GROUP RECOMMENDER SYSTEMS
MULTI-AGENT SYSTEMS
NEGOTIATION
PERSONALITY TRAITS
topic GROUP RECOMMENDER SYSTEMS
MULTI-AGENT SYSTEMS
NEGOTIATION
PERSONALITY TRAITS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recommender systems aim to predict the preferences of users and suggest items of interest to them in various domains. While traditional recommendation techniques consider users as individuals, some approaches aim to satisfy the needs of a group of people. Multi-agent systems can be used to develop such recommendations, where multiple intelligent agents interact with each other to achieve a common goal, i.e., deciding which item to recommend. Particularly, negotiation techniques can be used to find a decision that aims at maximizing the satisfaction of all group members. The proposed approach introduces a multi-agent recommender system for a group of users by considering their personality traits, relationships and social interactions during the negotiation process that leads to the generation of recommendations. While traditional recommendation techniques do not take into account the effects of personality traits and relationships between individuals, our approach demonstrates that personality traits, especially personality types in the context of conflict management, and social relationships can significantly impact on the group recommendation. The results indicate that the opinion of an individual can be influenced when she is part of a group that cooperates towards a shared goal. Overall, the proposed approach shows that recommender systems can benefit from considering that factors. This work contributes to understanding the impact of personality traits and social relationships on group recommendations and suggests potential directions for future research.
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Madsen, Daiana Elin. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description Recommender systems aim to predict the preferences of users and suggest items of interest to them in various domains. While traditional recommendation techniques consider users as individuals, some approaches aim to satisfy the needs of a group of people. Multi-agent systems can be used to develop such recommendations, where multiple intelligent agents interact with each other to achieve a common goal, i.e., deciding which item to recommend. Particularly, negotiation techniques can be used to find a decision that aims at maximizing the satisfaction of all group members. The proposed approach introduces a multi-agent recommender system for a group of users by considering their personality traits, relationships and social interactions during the negotiation process that leads to the generation of recommendations. While traditional recommendation techniques do not take into account the effects of personality traits and relationships between individuals, our approach demonstrates that personality traits, especially personality types in the context of conflict management, and social relationships can significantly impact on the group recommendation. The results indicate that the opinion of an individual can be influenced when she is part of a group that cooperates towards a shared goal. Overall, the proposed approach shows that recommender systems can benefit from considering that factors. This work contributes to understanding the impact of personality traits and social relationships on group recommendations and suggests potential directions for future research.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/254373
Monteserin, Ariel José; Madsen, Daiana Elin; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Integrating Social Relationships and Personality into MAS-Based Group Recommendations; MDPI; Big Data and Cognitive Computing; 9; 1; 12-2024; 1-21
2504-2289
CONICET Digital
CONICET
url http://hdl.handle.net/11336/254373
identifier_str_mv Monteserin, Ariel José; Madsen, Daiana Elin; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Integrating Social Relationships and Personality into MAS-Based Group Recommendations; MDPI; Big Data and Cognitive Computing; 9; 1; 12-2024; 1-21
2504-2289
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2504-2289/9/1/1
info:eu-repo/semantics/altIdentifier/doi/10.3390/bdcc9010001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268847681306624
score 13.13397