Grundy dominating sequences on X-join product

Autores
Nasini, Graciela Leonor; Torres, Pablo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the Grundy domination number on the X-join product G↩R of a graph G and a family of graphs R={Gv:v∈V(G)}. The results led us to extend the few known families of graphs where this parameter can be efficiently computed. We prove that if, for all v∈V(G), the Grundy domination number of Gv is given, and G is a power of a cycle, a power of a path, or a split graph, computing the Grundy domination number of G↩R can be done in polynomial time. In particular, our results for powers of cycles and paths are derived from a polynomial reduction to the Maximum Weight Independent Set problem on these graphs. As a consequence, we derive closed formulas to compute the Grundy domination number of the lexicographic product G∘H when G is a power of a cycle, a power of a path or a split graph, generalizing the results on cycles and paths given by Brešar et al. in 2016. Moreover, our results on the X-join product when G is a split graph also provide polynomial-time algorithms to compute the Grundy domination number for (q,q−4) graphs, partner limited graphs and extended P4-laden graphs, graph classes that are high in the hierarchy of few P4’s graphs.
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Torres, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
GRUNDY DOMINATING SEQUENCES
POWERS OF CYCLES
POWERS OF PATHS
SPLIT GRAPHS
X-JOIN PRODUCT
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114077

id CONICETDig_c80c68a76408497c1689fcf2a3d65725
oai_identifier_str oai:ri.conicet.gov.ar:11336/114077
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Grundy dominating sequences on X-join productNasini, Graciela LeonorTorres, PabloGRUNDY DOMINATING SEQUENCESPOWERS OF CYCLESPOWERS OF PATHSSPLIT GRAPHSX-JOIN PRODUCThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the Grundy domination number on the X-join product G↩R of a graph G and a family of graphs R={Gv:v∈V(G)}. The results led us to extend the few known families of graphs where this parameter can be efficiently computed. We prove that if, for all v∈V(G), the Grundy domination number of Gv is given, and G is a power of a cycle, a power of a path, or a split graph, computing the Grundy domination number of G↩R can be done in polynomial time. In particular, our results for powers of cycles and paths are derived from a polynomial reduction to the Maximum Weight Independent Set problem on these graphs. As a consequence, we derive closed formulas to compute the Grundy domination number of the lexicographic product G∘H when G is a power of a cycle, a power of a path or a split graph, generalizing the results on cycles and paths given by Brešar et al. in 2016. Moreover, our results on the X-join product when G is a split graph also provide polynomial-time algorithms to compute the Grundy domination number for (q,q−4) graphs, partner limited graphs and extended P4-laden graphs, graph classes that are high in the hierarchy of few P4’s graphs.Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Torres, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaElsevier Science2020-09info:eu-repo/date/embargoEnd/2021-03-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114077Nasini, Graciela Leonor; Torres, Pablo; Grundy dominating sequences on X-join product; Elsevier Science; Discrete Applied Mathematics; 284; 9-2020; 138-1490166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.02737info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2020.03.016info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:26Zoai:ri.conicet.gov.ar:11336/114077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:27.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Grundy dominating sequences on X-join product
title Grundy dominating sequences on X-join product
spellingShingle Grundy dominating sequences on X-join product
Nasini, Graciela Leonor
GRUNDY DOMINATING SEQUENCES
POWERS OF CYCLES
POWERS OF PATHS
SPLIT GRAPHS
X-JOIN PRODUCT
title_short Grundy dominating sequences on X-join product
title_full Grundy dominating sequences on X-join product
title_fullStr Grundy dominating sequences on X-join product
title_full_unstemmed Grundy dominating sequences on X-join product
title_sort Grundy dominating sequences on X-join product
dc.creator.none.fl_str_mv Nasini, Graciela Leonor
Torres, Pablo
author Nasini, Graciela Leonor
author_facet Nasini, Graciela Leonor
Torres, Pablo
author_role author
author2 Torres, Pablo
author2_role author
dc.subject.none.fl_str_mv GRUNDY DOMINATING SEQUENCES
POWERS OF CYCLES
POWERS OF PATHS
SPLIT GRAPHS
X-JOIN PRODUCT
topic GRUNDY DOMINATING SEQUENCES
POWERS OF CYCLES
POWERS OF PATHS
SPLIT GRAPHS
X-JOIN PRODUCT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study the Grundy domination number on the X-join product G↩R of a graph G and a family of graphs R={Gv:v∈V(G)}. The results led us to extend the few known families of graphs where this parameter can be efficiently computed. We prove that if, for all v∈V(G), the Grundy domination number of Gv is given, and G is a power of a cycle, a power of a path, or a split graph, computing the Grundy domination number of G↩R can be done in polynomial time. In particular, our results for powers of cycles and paths are derived from a polynomial reduction to the Maximum Weight Independent Set problem on these graphs. As a consequence, we derive closed formulas to compute the Grundy domination number of the lexicographic product G∘H when G is a power of a cycle, a power of a path or a split graph, generalizing the results on cycles and paths given by Brešar et al. in 2016. Moreover, our results on the X-join product when G is a split graph also provide polynomial-time algorithms to compute the Grundy domination number for (q,q−4) graphs, partner limited graphs and extended P4-laden graphs, graph classes that are high in the hierarchy of few P4’s graphs.
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Torres, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description In this paper we study the Grundy domination number on the X-join product G↩R of a graph G and a family of graphs R={Gv:v∈V(G)}. The results led us to extend the few known families of graphs where this parameter can be efficiently computed. We prove that if, for all v∈V(G), the Grundy domination number of Gv is given, and G is a power of a cycle, a power of a path, or a split graph, computing the Grundy domination number of G↩R can be done in polynomial time. In particular, our results for powers of cycles and paths are derived from a polynomial reduction to the Maximum Weight Independent Set problem on these graphs. As a consequence, we derive closed formulas to compute the Grundy domination number of the lexicographic product G∘H when G is a power of a cycle, a power of a path or a split graph, generalizing the results on cycles and paths given by Brešar et al. in 2016. Moreover, our results on the X-join product when G is a split graph also provide polynomial-time algorithms to compute the Grundy domination number for (q,q−4) graphs, partner limited graphs and extended P4-laden graphs, graph classes that are high in the hierarchy of few P4’s graphs.
publishDate 2020
dc.date.none.fl_str_mv 2020-09
info:eu-repo/date/embargoEnd/2021-03-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114077
Nasini, Graciela Leonor; Torres, Pablo; Grundy dominating sequences on X-join product; Elsevier Science; Discrete Applied Mathematics; 284; 9-2020; 138-149
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114077
identifier_str_mv Nasini, Graciela Leonor; Torres, Pablo; Grundy dominating sequences on X-join product; Elsevier Science; Discrete Applied Mathematics; 284; 9-2020; 138-149
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.02737
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2020.03.016
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613934450999296
score 13.070432