Renyi mutual information inequalities from Rindler positivity
- Autores
- Blanco, David Daniel; Lanosa, Leandro Federico; Leston, Mauricio; Pérez Nadal, Guillermo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Rindler positivity is a property that holds in any relativistic Quantum Field Theory and implies an infinite set of inequalities involving the exponential of the Rényi mutual information In (Ai,A¯ j) between Ai and A¯ j, where Ai is a spacelike region in the right Rindler wedge and A¯ j is the wedge reflection of Aj. We explore these inequalities in order to get local inequalities for In (A,A¯) as a function of the distance between A and its mirror region A¯. We show that the assumption, based on the cluster property of the vacuum, that In goes to zero when the distance goes to infinity, implies the more stringent and simple condition that Fn≡ e(n−1)I n should be a completely monotonic function of the distance, meaning that all the even (odd) derivatives are non-negative (non-positive). In the case of a CFT, we show that conformal invariance implies stronger conditions, including a sort of monotonicity of the Rényi mutual information for pairs of balls. An application of these inequalities to obtain constraints for the OPE coefficients of the 4-point function of certain twist operators is also discussed.
Fil: Blanco, David Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lanosa, Leandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Pérez Nadal, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
CONFORMAL FIELD THEORY
FIELD THEORIES IN LOWER DIMENSIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147562
Ver los metadatos del registro completo
id |
CONICETDig_7974d3bbe8dc32e10c1a057073e69448 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147562 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Renyi mutual information inequalities from Rindler positivityBlanco, David DanielLanosa, Leandro FedericoLeston, MauricioPérez Nadal, GuillermoCONFORMAL FIELD THEORYFIELD THEORIES IN LOWER DIMENSIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Rindler positivity is a property that holds in any relativistic Quantum Field Theory and implies an infinite set of inequalities involving the exponential of the Rényi mutual information In (Ai,A¯ j) between Ai and A¯ j, where Ai is a spacelike region in the right Rindler wedge and A¯ j is the wedge reflection of Aj. We explore these inequalities in order to get local inequalities for In (A,A¯) as a function of the distance between A and its mirror region A¯. We show that the assumption, based on the cluster property of the vacuum, that In goes to zero when the distance goes to infinity, implies the more stringent and simple condition that Fn≡ e(n−1)I n should be a completely monotonic function of the distance, meaning that all the even (odd) derivatives are non-negative (non-positive). In the case of a CFT, we show that conformal invariance implies stronger conditions, including a sort of monotonicity of the Rényi mutual information for pairs of balls. An application of these inequalities to obtain constraints for the OPE coefficients of the 4-point function of certain twist operators is also discussed.Fil: Blanco, David Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lanosa, Leandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Pérez Nadal, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2019-12-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147562Blanco, David Daniel; Lanosa, Leandro Federico; Leston, Mauricio; Pérez Nadal, Guillermo; Renyi mutual information inequalities from Rindler positivity; Springer; Journal of High Energy Physics; 2019; 78; 10-12-2019; 1-171126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP12(2019)078info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP12%282019%29078info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.03144info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:19Zoai:ri.conicet.gov.ar:11336/147562instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:19.689CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Renyi mutual information inequalities from Rindler positivity |
title |
Renyi mutual information inequalities from Rindler positivity |
spellingShingle |
Renyi mutual information inequalities from Rindler positivity Blanco, David Daniel CONFORMAL FIELD THEORY FIELD THEORIES IN LOWER DIMENSIONS |
title_short |
Renyi mutual information inequalities from Rindler positivity |
title_full |
Renyi mutual information inequalities from Rindler positivity |
title_fullStr |
Renyi mutual information inequalities from Rindler positivity |
title_full_unstemmed |
Renyi mutual information inequalities from Rindler positivity |
title_sort |
Renyi mutual information inequalities from Rindler positivity |
dc.creator.none.fl_str_mv |
Blanco, David Daniel Lanosa, Leandro Federico Leston, Mauricio Pérez Nadal, Guillermo |
author |
Blanco, David Daniel |
author_facet |
Blanco, David Daniel Lanosa, Leandro Federico Leston, Mauricio Pérez Nadal, Guillermo |
author_role |
author |
author2 |
Lanosa, Leandro Federico Leston, Mauricio Pérez Nadal, Guillermo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CONFORMAL FIELD THEORY FIELD THEORIES IN LOWER DIMENSIONS |
topic |
CONFORMAL FIELD THEORY FIELD THEORIES IN LOWER DIMENSIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Rindler positivity is a property that holds in any relativistic Quantum Field Theory and implies an infinite set of inequalities involving the exponential of the Rényi mutual information In (Ai,A¯ j) between Ai and A¯ j, where Ai is a spacelike region in the right Rindler wedge and A¯ j is the wedge reflection of Aj. We explore these inequalities in order to get local inequalities for In (A,A¯) as a function of the distance between A and its mirror region A¯. We show that the assumption, based on the cluster property of the vacuum, that In goes to zero when the distance goes to infinity, implies the more stringent and simple condition that Fn≡ e(n−1)I n should be a completely monotonic function of the distance, meaning that all the even (odd) derivatives are non-negative (non-positive). In the case of a CFT, we show that conformal invariance implies stronger conditions, including a sort of monotonicity of the Rényi mutual information for pairs of balls. An application of these inequalities to obtain constraints for the OPE coefficients of the 4-point function of certain twist operators is also discussed. Fil: Blanco, David Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lanosa, Leandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Pérez Nadal, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Rindler positivity is a property that holds in any relativistic Quantum Field Theory and implies an infinite set of inequalities involving the exponential of the Rényi mutual information In (Ai,A¯ j) between Ai and A¯ j, where Ai is a spacelike region in the right Rindler wedge and A¯ j is the wedge reflection of Aj. We explore these inequalities in order to get local inequalities for In (A,A¯) as a function of the distance between A and its mirror region A¯. We show that the assumption, based on the cluster property of the vacuum, that In goes to zero when the distance goes to infinity, implies the more stringent and simple condition that Fn≡ e(n−1)I n should be a completely monotonic function of the distance, meaning that all the even (odd) derivatives are non-negative (non-positive). In the case of a CFT, we show that conformal invariance implies stronger conditions, including a sort of monotonicity of the Rényi mutual information for pairs of balls. An application of these inequalities to obtain constraints for the OPE coefficients of the 4-point function of certain twist operators is also discussed. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147562 Blanco, David Daniel; Lanosa, Leandro Federico; Leston, Mauricio; Pérez Nadal, Guillermo; Renyi mutual information inequalities from Rindler positivity; Springer; Journal of High Energy Physics; 2019; 78; 10-12-2019; 1-17 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147562 |
identifier_str_mv |
Blanco, David Daniel; Lanosa, Leandro Federico; Leston, Mauricio; Pérez Nadal, Guillermo; Renyi mutual information inequalities from Rindler positivity; Springer; Journal of High Energy Physics; 2019; 78; 10-12-2019; 1-17 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP12(2019)078 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP12%282019%29078 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.03144 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980703289999360 |
score |
12.993085 |