Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties

Autores
Bailleul, Gautier; Nicoll, Callum R.; Mascotti, María Laura; Mattevi, Andrea; Fraaije, Marco Wilhelmus
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mammals rely on the oxidative flavin-containing monooxygenases (FMOs) to detoxify numerous and potentially deleterious xenobiotics; this activity extends to many drugs, giving FMOs high pharmacological relevance. However, our knowledge regarding these membrane-bound enzymes has been greatly impeded by the lack of structural information. We anticipated that ancestral-sequence reconstruction could help us identify protein sequences that are more amenable to structural analysis. As such, we hereby reconstructed the mammalian ancestral protein sequences of both FMO1 and FMO4, denoted as ancestral flavin-containing monooxygenase (AncFMO)1 and AncFMO4, respectively. AncFMO1, sharing 89.5% sequence identity with human FMO1, was successfully expressed as a functional enzyme. It displayed typical FMO activities as demonstrated by oxygenating benzydamine, tamoxifen, and thioanisole, drug-related compounds known to be also accepted by human FMO1, and both NADH and NADPH cofactors could act as electron donors, a feature only described for the FMO1 paralogs. AncFMO1 crystallized as a dimer and was structurally resolved at 3.0 Å resolution. The structure harbors typical FMO aspects with the flavin adenine dinucleotide and NAD(P)H binding domains and a C-terminal transmembrane helix. Intriguingly, AncFMO1 also contains some unique features, including a significantly porous and exposed active site, and NADPH adopting a new conformation with the 2’-phosphate being pushed inside the NADP+ binding domain instead of being stretched out in the solvent. Overall, the ancestrally reconstructed mammalian AncFMO1 serves as the first structural model to corroborate and rationalize the catalytic properties of FMO1.
Fil: Bailleul, Gautier. No especifíca;
Fil: Nicoll, Callum R.. Universita degli Studi di Pavia; Italia
Fil: Mascotti, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina
Fil: Mattevi, Andrea. Universita degli Studi di Pavia; Italia
Fil: Fraaije, Marco Wilhelmus. No especifíca;
Materia
FLAVIN-CONTAINING MONOOXYGENASE (FMO)
FLAVIN ADENINE DINUCLEOTIDE (FAD)
ANCESTRAL SEQUENCE RECONSTRUCTION (ASR)
NAD(P)H
ENZYME KINETICS
STOPPED-FLOW
CRYSTAL STRUCTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/174539

id CONICETDig_c73f62fc73e97adcb51c4d3f182f4c27
oai_identifier_str oai:ri.conicet.gov.ar:11336/174539
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic propertiesBailleul, GautierNicoll, Callum R.Mascotti, María LauraMattevi, AndreaFraaije, Marco WilhelmusFLAVIN-CONTAINING MONOOXYGENASE (FMO)FLAVIN ADENINE DINUCLEOTIDE (FAD)ANCESTRAL SEQUENCE RECONSTRUCTION (ASR)NAD(P)HENZYME KINETICSSTOPPED-FLOWCRYSTAL STRUCTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Mammals rely on the oxidative flavin-containing monooxygenases (FMOs) to detoxify numerous and potentially deleterious xenobiotics; this activity extends to many drugs, giving FMOs high pharmacological relevance. However, our knowledge regarding these membrane-bound enzymes has been greatly impeded by the lack of structural information. We anticipated that ancestral-sequence reconstruction could help us identify protein sequences that are more amenable to structural analysis. As such, we hereby reconstructed the mammalian ancestral protein sequences of both FMO1 and FMO4, denoted as ancestral flavin-containing monooxygenase (AncFMO)1 and AncFMO4, respectively. AncFMO1, sharing 89.5% sequence identity with human FMO1, was successfully expressed as a functional enzyme. It displayed typical FMO activities as demonstrated by oxygenating benzydamine, tamoxifen, and thioanisole, drug-related compounds known to be also accepted by human FMO1, and both NADH and NADPH cofactors could act as electron donors, a feature only described for the FMO1 paralogs. AncFMO1 crystallized as a dimer and was structurally resolved at 3.0 Å resolution. The structure harbors typical FMO aspects with the flavin adenine dinucleotide and NAD(P)H binding domains and a C-terminal transmembrane helix. Intriguingly, AncFMO1 also contains some unique features, including a significantly porous and exposed active site, and NADPH adopting a new conformation with the 2’-phosphate being pushed inside the NADP+ binding domain instead of being stretched out in the solvent. Overall, the ancestrally reconstructed mammalian AncFMO1 serves as the first structural model to corroborate and rationalize the catalytic properties of FMO1.Fil: Bailleul, Gautier. No especifíca;Fil: Nicoll, Callum R.. Universita degli Studi di Pavia; ItaliaFil: Mascotti, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Mattevi, Andrea. Universita degli Studi di Pavia; ItaliaFil: Fraaije, Marco Wilhelmus. No especifíca;American Society for Biochemistry and Molecular Biology2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174539Bailleul, Gautier; Nicoll, Callum R.; Mascotti, María Laura; Mattevi, Andrea; Fraaije, Marco Wilhelmus; Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 296; 1-2021; 1-130021-9258CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1074/jbc.RA120.016297info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:33Zoai:ri.conicet.gov.ar:11336/174539instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:33.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
title Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
spellingShingle Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
Bailleul, Gautier
FLAVIN-CONTAINING MONOOXYGENASE (FMO)
FLAVIN ADENINE DINUCLEOTIDE (FAD)
ANCESTRAL SEQUENCE RECONSTRUCTION (ASR)
NAD(P)H
ENZYME KINETICS
STOPPED-FLOW
CRYSTAL STRUCTURE
title_short Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
title_full Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
title_fullStr Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
title_full_unstemmed Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
title_sort Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties
dc.creator.none.fl_str_mv Bailleul, Gautier
Nicoll, Callum R.
Mascotti, María Laura
Mattevi, Andrea
Fraaije, Marco Wilhelmus
author Bailleul, Gautier
author_facet Bailleul, Gautier
Nicoll, Callum R.
Mascotti, María Laura
Mattevi, Andrea
Fraaije, Marco Wilhelmus
author_role author
author2 Nicoll, Callum R.
Mascotti, María Laura
Mattevi, Andrea
Fraaije, Marco Wilhelmus
author2_role author
author
author
author
dc.subject.none.fl_str_mv FLAVIN-CONTAINING MONOOXYGENASE (FMO)
FLAVIN ADENINE DINUCLEOTIDE (FAD)
ANCESTRAL SEQUENCE RECONSTRUCTION (ASR)
NAD(P)H
ENZYME KINETICS
STOPPED-FLOW
CRYSTAL STRUCTURE
topic FLAVIN-CONTAINING MONOOXYGENASE (FMO)
FLAVIN ADENINE DINUCLEOTIDE (FAD)
ANCESTRAL SEQUENCE RECONSTRUCTION (ASR)
NAD(P)H
ENZYME KINETICS
STOPPED-FLOW
CRYSTAL STRUCTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mammals rely on the oxidative flavin-containing monooxygenases (FMOs) to detoxify numerous and potentially deleterious xenobiotics; this activity extends to many drugs, giving FMOs high pharmacological relevance. However, our knowledge regarding these membrane-bound enzymes has been greatly impeded by the lack of structural information. We anticipated that ancestral-sequence reconstruction could help us identify protein sequences that are more amenable to structural analysis. As such, we hereby reconstructed the mammalian ancestral protein sequences of both FMO1 and FMO4, denoted as ancestral flavin-containing monooxygenase (AncFMO)1 and AncFMO4, respectively. AncFMO1, sharing 89.5% sequence identity with human FMO1, was successfully expressed as a functional enzyme. It displayed typical FMO activities as demonstrated by oxygenating benzydamine, tamoxifen, and thioanisole, drug-related compounds known to be also accepted by human FMO1, and both NADH and NADPH cofactors could act as electron donors, a feature only described for the FMO1 paralogs. AncFMO1 crystallized as a dimer and was structurally resolved at 3.0 Å resolution. The structure harbors typical FMO aspects with the flavin adenine dinucleotide and NAD(P)H binding domains and a C-terminal transmembrane helix. Intriguingly, AncFMO1 also contains some unique features, including a significantly porous and exposed active site, and NADPH adopting a new conformation with the 2’-phosphate being pushed inside the NADP+ binding domain instead of being stretched out in the solvent. Overall, the ancestrally reconstructed mammalian AncFMO1 serves as the first structural model to corroborate and rationalize the catalytic properties of FMO1.
Fil: Bailleul, Gautier. No especifíca;
Fil: Nicoll, Callum R.. Universita degli Studi di Pavia; Italia
Fil: Mascotti, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina
Fil: Mattevi, Andrea. Universita degli Studi di Pavia; Italia
Fil: Fraaije, Marco Wilhelmus. No especifíca;
description Mammals rely on the oxidative flavin-containing monooxygenases (FMOs) to detoxify numerous and potentially deleterious xenobiotics; this activity extends to many drugs, giving FMOs high pharmacological relevance. However, our knowledge regarding these membrane-bound enzymes has been greatly impeded by the lack of structural information. We anticipated that ancestral-sequence reconstruction could help us identify protein sequences that are more amenable to structural analysis. As such, we hereby reconstructed the mammalian ancestral protein sequences of both FMO1 and FMO4, denoted as ancestral flavin-containing monooxygenase (AncFMO)1 and AncFMO4, respectively. AncFMO1, sharing 89.5% sequence identity with human FMO1, was successfully expressed as a functional enzyme. It displayed typical FMO activities as demonstrated by oxygenating benzydamine, tamoxifen, and thioanisole, drug-related compounds known to be also accepted by human FMO1, and both NADH and NADPH cofactors could act as electron donors, a feature only described for the FMO1 paralogs. AncFMO1 crystallized as a dimer and was structurally resolved at 3.0 Å resolution. The structure harbors typical FMO aspects with the flavin adenine dinucleotide and NAD(P)H binding domains and a C-terminal transmembrane helix. Intriguingly, AncFMO1 also contains some unique features, including a significantly porous and exposed active site, and NADPH adopting a new conformation with the 2’-phosphate being pushed inside the NADP+ binding domain instead of being stretched out in the solvent. Overall, the ancestrally reconstructed mammalian AncFMO1 serves as the first structural model to corroborate and rationalize the catalytic properties of FMO1.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/174539
Bailleul, Gautier; Nicoll, Callum R.; Mascotti, María Laura; Mattevi, Andrea; Fraaije, Marco Wilhelmus; Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 296; 1-2021; 1-13
0021-9258
CONICET Digital
CONICET
url http://hdl.handle.net/11336/174539
identifier_str_mv Bailleul, Gautier; Nicoll, Callum R.; Mascotti, María Laura; Mattevi, Andrea; Fraaije, Marco Wilhelmus; Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 296; 1-2021; 1-13
0021-9258
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1074/jbc.RA120.016297
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society for Biochemistry and Molecular Biology
publisher.none.fl_str_mv American Society for Biochemistry and Molecular Biology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270049689141248
score 13.13397