Data handling in data fusion: Methodologies and applications
- Autores
- Azcarate, Silvana Mariela; Ríos Reina, Rocío; Amigo, José M.; Goicoechea, Hector Casimiro
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The use of data fusion methodologies has increased at the same rhythm as the capability of modern analytical laboratories of measuring sample from multiple sources. Almost all data fusion strategies can be grouped into three levels, they fuse the data differently with the sole aim of obtaining a better response (qualitative or quantitative) than that obtained by the instruments individually. One of the major key points for the data fusion methodologies to succeed is the understanding of the data structure obtained from a particular instrument. This point is not exhaustively commented in the literature focused on data fusion, sometimes paying too much attention to the algorithms instead. This manuscript explains data fusion from the structure of the different data obtained by different analytical platforms. Special attention will be given to the nature of the data and the relationships between the samples and the variables, as well as within the variables.
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Ríos Reina, Rocío. Universidad Pablo de Olavide.; España
Fil: Amigo, José M.. Universidad del País Vasco; España
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina - Materia
-
DATA FUSION STRATEGIES
DATA STRUCTURE
HIGH-LEVEL
LOW-LEVEL
MID-LEVEL
MULTILEVEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/165095
Ver los metadatos del registro completo
id |
CONICETDig_c7353bd43db35a9281367c17c58e1f75 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/165095 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Data handling in data fusion: Methodologies and applicationsAzcarate, Silvana MarielaRíos Reina, RocíoAmigo, José M.Goicoechea, Hector CasimiroDATA FUSION STRATEGIESDATA STRUCTUREHIGH-LEVELLOW-LEVELMID-LEVELMULTILEVELhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The use of data fusion methodologies has increased at the same rhythm as the capability of modern analytical laboratories of measuring sample from multiple sources. Almost all data fusion strategies can be grouped into three levels, they fuse the data differently with the sole aim of obtaining a better response (qualitative or quantitative) than that obtained by the instruments individually. One of the major key points for the data fusion methodologies to succeed is the understanding of the data structure obtained from a particular instrument. This point is not exhaustively commented in the literature focused on data fusion, sometimes paying too much attention to the algorithms instead. This manuscript explains data fusion from the structure of the different data obtained by different analytical platforms. Special attention will be given to the nature of the data and the relationships between the samples and the variables, as well as within the variables.Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Ríos Reina, Rocío. Universidad Pablo de Olavide.; EspañaFil: Amigo, José M.. Universidad del País Vasco; EspañaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaElsevier2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165095Azcarate, Silvana Mariela; Ríos Reina, Rocío; Amigo, José M.; Goicoechea, Hector Casimiro; Data handling in data fusion: Methodologies and applications; Elsevier; Trac-Trends In Analytical Chemistry; 143; 10-2021; 1-500165-9936CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165993621001783info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trac.2021.116355info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:21Zoai:ri.conicet.gov.ar:11336/165095instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:22.197CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Data handling in data fusion: Methodologies and applications |
title |
Data handling in data fusion: Methodologies and applications |
spellingShingle |
Data handling in data fusion: Methodologies and applications Azcarate, Silvana Mariela DATA FUSION STRATEGIES DATA STRUCTURE HIGH-LEVEL LOW-LEVEL MID-LEVEL MULTILEVEL |
title_short |
Data handling in data fusion: Methodologies and applications |
title_full |
Data handling in data fusion: Methodologies and applications |
title_fullStr |
Data handling in data fusion: Methodologies and applications |
title_full_unstemmed |
Data handling in data fusion: Methodologies and applications |
title_sort |
Data handling in data fusion: Methodologies and applications |
dc.creator.none.fl_str_mv |
Azcarate, Silvana Mariela Ríos Reina, Rocío Amigo, José M. Goicoechea, Hector Casimiro |
author |
Azcarate, Silvana Mariela |
author_facet |
Azcarate, Silvana Mariela Ríos Reina, Rocío Amigo, José M. Goicoechea, Hector Casimiro |
author_role |
author |
author2 |
Ríos Reina, Rocío Amigo, José M. Goicoechea, Hector Casimiro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DATA FUSION STRATEGIES DATA STRUCTURE HIGH-LEVEL LOW-LEVEL MID-LEVEL MULTILEVEL |
topic |
DATA FUSION STRATEGIES DATA STRUCTURE HIGH-LEVEL LOW-LEVEL MID-LEVEL MULTILEVEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The use of data fusion methodologies has increased at the same rhythm as the capability of modern analytical laboratories of measuring sample from multiple sources. Almost all data fusion strategies can be grouped into three levels, they fuse the data differently with the sole aim of obtaining a better response (qualitative or quantitative) than that obtained by the instruments individually. One of the major key points for the data fusion methodologies to succeed is the understanding of the data structure obtained from a particular instrument. This point is not exhaustively commented in the literature focused on data fusion, sometimes paying too much attention to the algorithms instead. This manuscript explains data fusion from the structure of the different data obtained by different analytical platforms. Special attention will be given to the nature of the data and the relationships between the samples and the variables, as well as within the variables. Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Ríos Reina, Rocío. Universidad Pablo de Olavide.; España Fil: Amigo, José M.. Universidad del País Vasco; España Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina |
description |
The use of data fusion methodologies has increased at the same rhythm as the capability of modern analytical laboratories of measuring sample from multiple sources. Almost all data fusion strategies can be grouped into three levels, they fuse the data differently with the sole aim of obtaining a better response (qualitative or quantitative) than that obtained by the instruments individually. One of the major key points for the data fusion methodologies to succeed is the understanding of the data structure obtained from a particular instrument. This point is not exhaustively commented in the literature focused on data fusion, sometimes paying too much attention to the algorithms instead. This manuscript explains data fusion from the structure of the different data obtained by different analytical platforms. Special attention will be given to the nature of the data and the relationships between the samples and the variables, as well as within the variables. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/165095 Azcarate, Silvana Mariela; Ríos Reina, Rocío; Amigo, José M.; Goicoechea, Hector Casimiro; Data handling in data fusion: Methodologies and applications; Elsevier; Trac-Trends In Analytical Chemistry; 143; 10-2021; 1-50 0165-9936 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/165095 |
identifier_str_mv |
Azcarate, Silvana Mariela; Ríos Reina, Rocío; Amigo, José M.; Goicoechea, Hector Casimiro; Data handling in data fusion: Methodologies and applications; Elsevier; Trac-Trends In Analytical Chemistry; 143; 10-2021; 1-50 0165-9936 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165993621001783 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trac.2021.116355 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613669598527488 |
score |
13.070432 |