Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
- Autores
- Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
Fil: Ríos Reina, Rocío. Universidad de Sevilla; España
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina - Materia
-
CLASSIFICATION
ELECTROPHORESIS CAPILLARY
MULTI-LEVEL DATA FUSION
MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY
THREE-WAY DATA MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151711
Ver los metadatos del registro completo
id |
CONICETDig_30b8870451761c4190586b00490baca1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151711 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of winesRíos Reina, RocíoAzcarate, Silvana MarielaCamiña, José ManuelGoicoechea, Hector CasimiroCLASSIFICATIONELECTROPHORESIS CAPILLARYMULTI-LEVEL DATA FUSIONMULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPYTHREE-WAY DATA MODELINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.Fil: Ríos Reina, Rocío. Universidad de Sevilla; EspañaFil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaElsevier Science2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151711Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-620003-2670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267020306620info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2020.06.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:53Zoai:ri.conicet.gov.ar:11336/151711instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:53.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
title |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
spellingShingle |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines Ríos Reina, Rocío CLASSIFICATION ELECTROPHORESIS CAPILLARY MULTI-LEVEL DATA FUSION MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY THREE-WAY DATA MODELING |
title_short |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
title_full |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
title_fullStr |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
title_full_unstemmed |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
title_sort |
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines |
dc.creator.none.fl_str_mv |
Ríos Reina, Rocío Azcarate, Silvana Mariela Camiña, José Manuel Goicoechea, Hector Casimiro |
author |
Ríos Reina, Rocío |
author_facet |
Ríos Reina, Rocío Azcarate, Silvana Mariela Camiña, José Manuel Goicoechea, Hector Casimiro |
author_role |
author |
author2 |
Azcarate, Silvana Mariela Camiña, José Manuel Goicoechea, Hector Casimiro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CLASSIFICATION ELECTROPHORESIS CAPILLARY MULTI-LEVEL DATA FUSION MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY THREE-WAY DATA MODELING |
topic |
CLASSIFICATION ELECTROPHORESIS CAPILLARY MULTI-LEVEL DATA FUSION MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY THREE-WAY DATA MODELING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results. Fil: Ríos Reina, Rocío. Universidad de Sevilla; España Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina |
description |
Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151711 Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-62 0003-2670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151711 |
identifier_str_mv |
Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-62 0003-2670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267020306620 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2020.06.014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614450764578816 |
score |
13.070432 |