Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines

Autores
Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
Fil: Ríos Reina, Rocío. Universidad de Sevilla; España
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
Materia
CLASSIFICATION
ELECTROPHORESIS CAPILLARY
MULTI-LEVEL DATA FUSION
MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY
THREE-WAY DATA MODELING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151711

id CONICETDig_30b8870451761c4190586b00490baca1
oai_identifier_str oai:ri.conicet.gov.ar:11336/151711
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of winesRíos Reina, RocíoAzcarate, Silvana MarielaCamiña, José ManuelGoicoechea, Hector CasimiroCLASSIFICATIONELECTROPHORESIS CAPILLARYMULTI-LEVEL DATA FUSIONMULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPYTHREE-WAY DATA MODELINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.Fil: Ríos Reina, Rocío. Universidad de Sevilla; EspañaFil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaElsevier Science2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151711Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-620003-2670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267020306620info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2020.06.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:53Zoai:ri.conicet.gov.ar:11336/151711instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:53.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
title Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
spellingShingle Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
Ríos Reina, Rocío
CLASSIFICATION
ELECTROPHORESIS CAPILLARY
MULTI-LEVEL DATA FUSION
MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY
THREE-WAY DATA MODELING
title_short Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
title_full Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
title_fullStr Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
title_full_unstemmed Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
title_sort Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
dc.creator.none.fl_str_mv Ríos Reina, Rocío
Azcarate, Silvana Mariela
Camiña, José Manuel
Goicoechea, Hector Casimiro
author Ríos Reina, Rocío
author_facet Ríos Reina, Rocío
Azcarate, Silvana Mariela
Camiña, José Manuel
Goicoechea, Hector Casimiro
author_role author
author2 Azcarate, Silvana Mariela
Camiña, José Manuel
Goicoechea, Hector Casimiro
author2_role author
author
author
dc.subject.none.fl_str_mv CLASSIFICATION
ELECTROPHORESIS CAPILLARY
MULTI-LEVEL DATA FUSION
MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY
THREE-WAY DATA MODELING
topic CLASSIFICATION
ELECTROPHORESIS CAPILLARY
MULTI-LEVEL DATA FUSION
MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY
THREE-WAY DATA MODELING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
Fil: Ríos Reina, Rocío. Universidad de Sevilla; España
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
description Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151711
Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-62
0003-2670
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151711
identifier_str_mv Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-62
0003-2670
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267020306620
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2020.06.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614450764578816
score 13.070432