A characterization of elliptical distributions and some optimality properties of principal components for functional data
- Autores
- Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; Tyler, David E.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Salibian Barrera, Matías Octavio. University Of British Columbia; Canadá
Fil: Tyler, David E.. Rutgers University; Estados Unidos - Materia
-
Elliptical Distributions
Functional Data Analysis
Principal Components - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18730
Ver los metadatos del registro completo
id |
CONICETDig_c726664b53d023c27abdabf1d1d85897 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18730 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A characterization of elliptical distributions and some optimality properties of principal components for functional dataBoente Boente, Graciela LinaSalibian Barrera, Matías OctavioTyler, David E.Elliptical DistributionsFunctional Data AnalysisPrincipal Componentshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Salibian Barrera, Matías Octavio. University Of British Columbia; CanadáFil: Tyler, David E.. Rutgers University; Estados UnidosElsevier Inc2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18730Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; Tyler, David E.; A characterization of elliptical distributions and some optimality properties of principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 131; 10-2014; 254-2640047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.07.006info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14001638info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:40Zoai:ri.conicet.gov.ar:11336/18730instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:41.188CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
title |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
spellingShingle |
A characterization of elliptical distributions and some optimality properties of principal components for functional data Boente Boente, Graciela Lina Elliptical Distributions Functional Data Analysis Principal Components |
title_short |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
title_full |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
title_fullStr |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
title_full_unstemmed |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
title_sort |
A characterization of elliptical distributions and some optimality properties of principal components for functional data |
dc.creator.none.fl_str_mv |
Boente Boente, Graciela Lina Salibian Barrera, Matías Octavio Tyler, David E. |
author |
Boente Boente, Graciela Lina |
author_facet |
Boente Boente, Graciela Lina Salibian Barrera, Matías Octavio Tyler, David E. |
author_role |
author |
author2 |
Salibian Barrera, Matías Octavio Tyler, David E. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Elliptical Distributions Functional Data Analysis Principal Components |
topic |
Elliptical Distributions Functional Data Analysis Principal Components |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator. Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Salibian Barrera, Matías Octavio. University Of British Columbia; Canadá Fil: Tyler, David E.. Rutgers University; Estados Unidos |
description |
As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18730 Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; Tyler, David E.; A characterization of elliptical distributions and some optimality properties of principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 131; 10-2014; 254-264 0047-259X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18730 |
identifier_str_mv |
Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; Tyler, David E.; A characterization of elliptical distributions and some optimality properties of principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 131; 10-2014; 254-264 0047-259X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.07.006 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14001638 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613036843728896 |
score |
13.070432 |