Inference under functional proportional and common principal component models

Autores
Boente, G.; Rodriguez, D.; Sued, M.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved.
Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Multivariate Anal. 2010;101(2):464-475
Materia
Common principal components
Eigenfunctions
Functional data analysis
Hilbert-Schmidt operators
Kernel methods
Proportional model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0047259X_v101_n2_p464_Boente

id BDUBAFCEN_4789e6b6411787b5fccb58013c74ccad
oai_identifier_str paperaa:paper_0047259X_v101_n2_p464_Boente
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Inference under functional proportional and common principal component modelsBoente, G.Rodriguez, D.Sued, M.Common principal componentsEigenfunctionsFunctional data analysisHilbert-Schmidt operatorsKernel methodsProportional modelIn many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved.Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_BoenteJ. Multivariate Anal. 2010;101(2):464-475reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_0047259X_v101_n2_p464_BoenteInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.443Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Inference under functional proportional and common principal component models
title Inference under functional proportional and common principal component models
spellingShingle Inference under functional proportional and common principal component models
Boente, G.
Common principal components
Eigenfunctions
Functional data analysis
Hilbert-Schmidt operators
Kernel methods
Proportional model
title_short Inference under functional proportional and common principal component models
title_full Inference under functional proportional and common principal component models
title_fullStr Inference under functional proportional and common principal component models
title_full_unstemmed Inference under functional proportional and common principal component models
title_sort Inference under functional proportional and common principal component models
dc.creator.none.fl_str_mv Boente, G.
Rodriguez, D.
Sued, M.
author Boente, G.
author_facet Boente, G.
Rodriguez, D.
Sued, M.
author_role author
author2 Rodriguez, D.
Sued, M.
author2_role author
author
dc.subject.none.fl_str_mv Common principal components
Eigenfunctions
Functional data analysis
Hilbert-Schmidt operators
Kernel methods
Proportional model
topic Common principal components
Eigenfunctions
Functional data analysis
Hilbert-Schmidt operators
Kernel methods
Proportional model
dc.description.none.fl_txt_mv In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved.
Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_Boente
url http://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_Boente
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Multivariate Anal. 2010;101(2):464-475
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740279279616
score 13.070432