Inference under functional proportional and common principal component models
- Autores
- Boente, G.; Rodriguez, D.; Sued, M.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved.
Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Multivariate Anal. 2010;101(2):464-475
- Materia
-
Common principal components
Eigenfunctions
Functional data analysis
Hilbert-Schmidt operators
Kernel methods
Proportional model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0047259X_v101_n2_p464_Boente
Ver los metadatos del registro completo
id |
BDUBAFCEN_4789e6b6411787b5fccb58013c74ccad |
---|---|
oai_identifier_str |
paperaa:paper_0047259X_v101_n2_p464_Boente |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Inference under functional proportional and common principal component modelsBoente, G.Rodriguez, D.Sued, M.Common principal componentsEigenfunctionsFunctional data analysisHilbert-Schmidt operatorsKernel methodsProportional modelIn many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved.Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_BoenteJ. Multivariate Anal. 2010;101(2):464-475reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_0047259X_v101_n2_p464_BoenteInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.443Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Inference under functional proportional and common principal component models |
title |
Inference under functional proportional and common principal component models |
spellingShingle |
Inference under functional proportional and common principal component models Boente, G. Common principal components Eigenfunctions Functional data analysis Hilbert-Schmidt operators Kernel methods Proportional model |
title_short |
Inference under functional proportional and common principal component models |
title_full |
Inference under functional proportional and common principal component models |
title_fullStr |
Inference under functional proportional and common principal component models |
title_full_unstemmed |
Inference under functional proportional and common principal component models |
title_sort |
Inference under functional proportional and common principal component models |
dc.creator.none.fl_str_mv |
Boente, G. Rodriguez, D. Sued, M. |
author |
Boente, G. |
author_facet |
Boente, G. Rodriguez, D. Sued, M. |
author_role |
author |
author2 |
Rodriguez, D. Sued, M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Common principal components Eigenfunctions Functional data analysis Hilbert-Schmidt operators Kernel methods Proportional model |
topic |
Common principal components Eigenfunctions Functional data analysis Hilbert-Schmidt operators Kernel methods Proportional model |
dc.description.none.fl_txt_mv |
In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved. Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure. In this paper, we discuss the extension to the functional setting of the common principal component model that has been widely studied when dealing with multivariate observations. Moreover, we also consider a proportional model in which the covariance operators are assumed to be equal up to a multiplicative constant. For both models, we present estimators of the unknown parameters and we obtain their asymptotic distribution. A test for equality against proportionality is also considered. © 2009 Elsevier Inc. All rights reserved. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_Boente |
url |
http://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_Boente |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Multivariate Anal. 2010;101(2):464-475 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740279279616 |
score |
13.070432 |