Covariance reducing models: An alternative to spectral modelling of covariance matrices
- Autores
- Cook, R. Dennis; Forzani, Liliana Maria
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce covariance reducing models for studying the sample covariance matrices of a random vector observed in different populations. The models are based on reducing the sample covariance matrices to an informational core that is sufficient to characterize the variance heterogeneity among the populations. They possess useful equivariance properties and provide a clear alternative to spectral models for covariance matrices.
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
CENTRAL SUBSPACE
DIMENSION REDUCTION
ENVELOPES
GRASSMANN MANIFOLDS
REDUCING SUBSPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84236
Ver los metadatos del registro completo
id |
CONICETDig_c6b9543eea7e1a5aa0f028a45d0e7931 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84236 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Covariance reducing models: An alternative to spectral modelling of covariance matricesCook, R. DennisForzani, Liliana MariaCENTRAL SUBSPACEDIMENSION REDUCTIONENVELOPESGRASSMANN MANIFOLDSREDUCING SUBSPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce covariance reducing models for studying the sample covariance matrices of a random vector observed in different populations. The models are based on reducing the sample covariance matrices to an informational core that is sufficient to characterize the variance heterogeneity among the populations. They possess useful equivariance properties and provide a clear alternative to spectral models for covariance matrices.Fil: Cook, R. Dennis. University of Minnesota; Estados UnidosFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaOxford University Press2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/x-texapplication/pdfhttp://hdl.handle.net/11336/84236Cook, R. Dennis; Forzani, Liliana Maria; Covariance reducing models: An alternative to spectral modelling of covariance matrices; Oxford University Press; Biometrika; 95; 4; 12-2008; 799-8120006-3444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/biomet/asn052info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biomet/article-abstract/95/4/799/262858info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:20Zoai:ri.conicet.gov.ar:11336/84236instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:21.219CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
title |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
spellingShingle |
Covariance reducing models: An alternative to spectral modelling of covariance matrices Cook, R. Dennis CENTRAL SUBSPACE DIMENSION REDUCTION ENVELOPES GRASSMANN MANIFOLDS REDUCING SUBSPACES |
title_short |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
title_full |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
title_fullStr |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
title_full_unstemmed |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
title_sort |
Covariance reducing models: An alternative to spectral modelling of covariance matrices |
dc.creator.none.fl_str_mv |
Cook, R. Dennis Forzani, Liliana Maria |
author |
Cook, R. Dennis |
author_facet |
Cook, R. Dennis Forzani, Liliana Maria |
author_role |
author |
author2 |
Forzani, Liliana Maria |
author2_role |
author |
dc.subject.none.fl_str_mv |
CENTRAL SUBSPACE DIMENSION REDUCTION ENVELOPES GRASSMANN MANIFOLDS REDUCING SUBSPACES |
topic |
CENTRAL SUBSPACE DIMENSION REDUCTION ENVELOPES GRASSMANN MANIFOLDS REDUCING SUBSPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce covariance reducing models for studying the sample covariance matrices of a random vector observed in different populations. The models are based on reducing the sample covariance matrices to an informational core that is sufficient to characterize the variance heterogeneity among the populations. They possess useful equivariance properties and provide a clear alternative to spectral models for covariance matrices. Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We introduce covariance reducing models for studying the sample covariance matrices of a random vector observed in different populations. The models are based on reducing the sample covariance matrices to an informational core that is sufficient to characterize the variance heterogeneity among the populations. They possess useful equivariance properties and provide a clear alternative to spectral models for covariance matrices. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84236 Cook, R. Dennis; Forzani, Liliana Maria; Covariance reducing models: An alternative to spectral modelling of covariance matrices; Oxford University Press; Biometrika; 95; 4; 12-2008; 799-812 0006-3444 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84236 |
identifier_str_mv |
Cook, R. Dennis; Forzani, Liliana Maria; Covariance reducing models: An alternative to spectral modelling of covariance matrices; Oxford University Press; Biometrika; 95; 4; 12-2008; 799-812 0006-3444 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/biomet/asn052 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biomet/article-abstract/95/4/799/262858 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/x-tex application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614183564345344 |
score |
13.070432 |