Estimating sufficient reductions of the predictors in abundant high-dimensional regressions
- Autores
- Cook, R. Dennis; Forzani, Liliana Maria; Rothman, Adam
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion.
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Rothman, Adam. University of Minnesota; Estados Unidos - Materia
-
CENTRAL SUBSPACE
ORACLE PROPERTY
PRINCIPAL FITTED COMPONENTS
SPARSITY
SPICE
SUFFICIENT DIMENSION REDUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60500
Ver los metadatos del registro completo
id |
CONICETDig_3551a2630fb9f10bb24b04592cc7534c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60500 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressionsCook, R. DennisForzani, Liliana MariaRothman, AdamCENTRAL SUBSPACEORACLE PROPERTYPRINCIPAL FITTED COMPONENTSSPARSITYSPICESUFFICIENT DIMENSION REDUCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion.Fil: Cook, R. Dennis. University of Minnesota; Estados UnidosFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Rothman, Adam. University of Minnesota; Estados UnidosInstitute of Mathematical Statistics2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60500Cook, R. Dennis; Forzani, Liliana Maria; Rothman, Adam; Estimating sufficient reductions of the predictors in abundant high-dimensional regressions; Institute of Mathematical Statistics; Annals Of Statistics, The; 40; 1; 2-2012; 353-3840090-5364CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1214/11-AOS962info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:04:51Zoai:ri.conicet.gov.ar:11336/60500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:04:52.105CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
title |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
spellingShingle |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions Cook, R. Dennis CENTRAL SUBSPACE ORACLE PROPERTY PRINCIPAL FITTED COMPONENTS SPARSITY SPICE SUFFICIENT DIMENSION REDUCTION |
title_short |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
title_full |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
title_fullStr |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
title_full_unstemmed |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
title_sort |
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions |
dc.creator.none.fl_str_mv |
Cook, R. Dennis Forzani, Liliana Maria Rothman, Adam |
author |
Cook, R. Dennis |
author_facet |
Cook, R. Dennis Forzani, Liliana Maria Rothman, Adam |
author_role |
author |
author2 |
Forzani, Liliana Maria Rothman, Adam |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CENTRAL SUBSPACE ORACLE PROPERTY PRINCIPAL FITTED COMPONENTS SPARSITY SPICE SUFFICIENT DIMENSION REDUCTION |
topic |
CENTRAL SUBSPACE ORACLE PROPERTY PRINCIPAL FITTED COMPONENTS SPARSITY SPICE SUFFICIENT DIMENSION REDUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion. Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Rothman, Adam. University of Minnesota; Estados Unidos |
description |
We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60500 Cook, R. Dennis; Forzani, Liliana Maria; Rothman, Adam; Estimating sufficient reductions of the predictors in abundant high-dimensional regressions; Institute of Mathematical Statistics; Annals Of Statistics, The; 40; 1; 2-2012; 353-384 0090-5364 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60500 |
identifier_str_mv |
Cook, R. Dennis; Forzani, Liliana Maria; Rothman, Adam; Estimating sufficient reductions of the predictors in abundant high-dimensional regressions; Institute of Mathematical Statistics; Annals Of Statistics, The; 40; 1; 2-2012; 353-384 0090-5364 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1214/11-AOS962 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781315150512128 |
score |
12.8982525 |