A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media

Autores
Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows.
Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silin, Nicolas. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Materia
Python
Lattice Boltzmann
Permeable media
Three dimensional flow
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/126246

id CONICETDig_c660d3b177e74a7e76443e9a0a9ea3e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/126246
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable mediaBoroni, Gustavo AdolfoSilin, NicolasClausse, AlejandroPythonLattice BoltzmannPermeable mediaThree dimensional flowhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows.Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silin, Nicolas. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaAmerican Institute of Physics2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126246Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro; A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media; American Institute of Physics; Physics of Fluids; 32; 12; 12-2020; 12710701-127107161070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0032630info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0032630info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:09Zoai:ri.conicet.gov.ar:11336/126246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:09.605CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
title A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
spellingShingle A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
Boroni, Gustavo Adolfo
Python
Lattice Boltzmann
Permeable media
Three dimensional flow
title_short A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
title_full A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
title_fullStr A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
title_full_unstemmed A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
title_sort A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
dc.creator.none.fl_str_mv Boroni, Gustavo Adolfo
Silin, Nicolas
Clausse, Alejandro
author Boroni, Gustavo Adolfo
author_facet Boroni, Gustavo Adolfo
Silin, Nicolas
Clausse, Alejandro
author_role author
author2 Silin, Nicolas
Clausse, Alejandro
author2_role author
author
dc.subject.none.fl_str_mv Python
Lattice Boltzmann
Permeable media
Three dimensional flow
topic Python
Lattice Boltzmann
Permeable media
Three dimensional flow
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows.
Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silin, Nicolas. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
description The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/126246
Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro; A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media; American Institute of Physics; Physics of Fluids; 32; 12; 12-2020; 12710701-12710716
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/126246
identifier_str_mv Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro; A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media; American Institute of Physics; Physics of Fluids; 32; 12; 12-2020; 12710701-12710716
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0032630
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0032630
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980380800450560
score 12.993085