A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media
- Autores
- Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows.
Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silin, Nicolas. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina - Materia
-
Python
Lattice Boltzmann
Permeable media
Three dimensional flow - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/126246
Ver los metadatos del registro completo
id |
CONICETDig_c660d3b177e74a7e76443e9a0a9ea3e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/126246 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable mediaBoroni, Gustavo AdolfoSilin, NicolasClausse, AlejandroPythonLattice BoltzmannPermeable mediaThree dimensional flowhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows.Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silin, Nicolas. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaAmerican Institute of Physics2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126246Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro; A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media; American Institute of Physics; Physics of Fluids; 32; 12; 12-2020; 12710701-127107161070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0032630info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0032630info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:09Zoai:ri.conicet.gov.ar:11336/126246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:09.605CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
title |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
spellingShingle |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media Boroni, Gustavo Adolfo Python Lattice Boltzmann Permeable media Three dimensional flow |
title_short |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
title_full |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
title_fullStr |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
title_full_unstemmed |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
title_sort |
A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media |
dc.creator.none.fl_str_mv |
Boroni, Gustavo Adolfo Silin, Nicolas Clausse, Alejandro |
author |
Boroni, Gustavo Adolfo |
author_facet |
Boroni, Gustavo Adolfo Silin, Nicolas Clausse, Alejandro |
author_role |
author |
author2 |
Silin, Nicolas Clausse, Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Python Lattice Boltzmann Permeable media Three dimensional flow |
topic |
Python Lattice Boltzmann Permeable media Three dimensional flow |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows. Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Silin, Nicolas. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina |
description |
The implementation of a lattice Boltzmann model for three-dimensional permeable media with localized drag forces is presented. The model was previously introduced for two-dimensional geometries and follows the basics of the immersed boundary method. Permeable flows are much less stable than their counterparts in porous media and generally produce large coherent flow structures, such as vortex lines, rolls, and wakes. In addition, in permeable media, the small-scale geometry often needs to be represented to a high degree of detail in order to capture certain transport phenomena, such as micro-convection or pollination. Hence, both calculation speed and memory requirements are under strain. The present model was implemented in a graphic processing unit showing excellent performance in the calculation of stable and unstable flows in a rectangular channel partially obstructed by an array of parallel wires. In particular, the model is able to deal with small and medium spatial scales without losing the heterogeneous nature of permeable flows in the homogenization process. The algorithm to manage memory issues is described in detail, and the results of the test case for stable and unstable conditions show the capability of the method to simulate these types of flows. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/126246 Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro; A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media; American Institute of Physics; Physics of Fluids; 32; 12; 12-2020; 12710701-12710716 1070-6631 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/126246 |
identifier_str_mv |
Boroni, Gustavo Adolfo; Silin, Nicolas; Clausse, Alejandro; A Python implementation in graphic processing unit of a lattice Boltzmann model for unstable three-dimensional flows in immersed permeable media; American Institute of Physics; Physics of Fluids; 32; 12; 12-2020; 12710701-12710716 1070-6631 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0032630 info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0032630 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980380800450560 |
score |
12.993085 |