Tsallis entropy and the Vlasov-Poisson equations

Autores
Plastino, Ángel Ricardo; Plastino, Ángel Luis
Año de publicación
1999
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.
Facultad de Ciencias Astronómicas y Geofísicas
Facultad de Ciencias Exactas
Materia
Física
Astronomía
Poisson distribution
Special case
Tsallis entropy
Physics
Statistical physics
Gravitation
Three-dimensional space
Tsallis statistics
Space dimension
Principle of maximum entropy
Thermodynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/122873

id SEDICI_1e2fa4809e3cc23b64153cc8ae55f88a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/122873
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Tsallis entropy and the Vlasov-Poisson equationsPlastino, Ángel RicardoPlastino, Ángel LuisFísicaAstronomíaPoisson distributionSpecial caseTsallis entropyPhysicsStatistical physicsGravitationThree-dimensional spaceTsallis statisticsSpace dimensionPrinciple of maximum entropyThermodynamicsWe revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.Facultad de Ciencias Astronómicas y GeofísicasFacultad de Ciencias Exactas1999-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf79-90http://sedici.unlp.edu.ar/handle/10915/122873enginfo:eu-repo/semantics/altIdentifier/issn/0103-9733info:eu-repo/semantics/altIdentifier/doi/10.1590/s0103-97331999000100008info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:07Zoai:sedici.unlp.edu.ar:10915/122873Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:07.958SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Tsallis entropy and the Vlasov-Poisson equations
title Tsallis entropy and the Vlasov-Poisson equations
spellingShingle Tsallis entropy and the Vlasov-Poisson equations
Plastino, Ángel Ricardo
Física
Astronomía
Poisson distribution
Special case
Tsallis entropy
Physics
Statistical physics
Gravitation
Three-dimensional space
Tsallis statistics
Space dimension
Principle of maximum entropy
Thermodynamics
title_short Tsallis entropy and the Vlasov-Poisson equations
title_full Tsallis entropy and the Vlasov-Poisson equations
title_fullStr Tsallis entropy and the Vlasov-Poisson equations
title_full_unstemmed Tsallis entropy and the Vlasov-Poisson equations
title_sort Tsallis entropy and the Vlasov-Poisson equations
dc.creator.none.fl_str_mv Plastino, Ángel Ricardo
Plastino, Ángel Luis
author Plastino, Ángel Ricardo
author_facet Plastino, Ángel Ricardo
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Física
Astronomía
Poisson distribution
Special case
Tsallis entropy
Physics
Statistical physics
Gravitation
Three-dimensional space
Tsallis statistics
Space dimension
Principle of maximum entropy
Thermodynamics
topic Física
Astronomía
Poisson distribution
Special case
Tsallis entropy
Physics
Statistical physics
Gravitation
Three-dimensional space
Tsallis statistics
Space dimension
Principle of maximum entropy
Thermodynamics
dc.description.none.fl_txt_mv We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.
Facultad de Ciencias Astronómicas y Geofísicas
Facultad de Ciencias Exactas
description We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.
publishDate 1999
dc.date.none.fl_str_mv 1999-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/122873
url http://sedici.unlp.edu.ar/handle/10915/122873
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0103-9733
info:eu-repo/semantics/altIdentifier/doi/10.1590/s0103-97331999000100008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
79-90
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064268124880896
score 13.22299