Tsallis entropy and the Vlasov-Poisson equations
- Autores
- Plastino, Ángel Ricardo; Plastino, Ángel Luis
- Año de publicación
- 1999
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.
Facultad de Ciencias Astronómicas y Geofísicas
Facultad de Ciencias Exactas - Materia
-
Física
Astronomía
Poisson distribution
Special case
Tsallis entropy
Physics
Statistical physics
Gravitation
Three-dimensional space
Tsallis statistics
Space dimension
Principle of maximum entropy
Thermodynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/122873
Ver los metadatos del registro completo
id |
SEDICI_1e2fa4809e3cc23b64153cc8ae55f88a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/122873 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Tsallis entropy and the Vlasov-Poisson equationsPlastino, Ángel RicardoPlastino, Ángel LuisFísicaAstronomíaPoisson distributionSpecial caseTsallis entropyPhysicsStatistical physicsGravitationThree-dimensional spaceTsallis statisticsSpace dimensionPrinciple of maximum entropyThermodynamicsWe revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.Facultad de Ciencias Astronómicas y GeofísicasFacultad de Ciencias Exactas1999-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf79-90http://sedici.unlp.edu.ar/handle/10915/122873enginfo:eu-repo/semantics/altIdentifier/issn/0103-9733info:eu-repo/semantics/altIdentifier/doi/10.1590/s0103-97331999000100008info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:07Zoai:sedici.unlp.edu.ar:10915/122873Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:07.958SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Tsallis entropy and the Vlasov-Poisson equations |
title |
Tsallis entropy and the Vlasov-Poisson equations |
spellingShingle |
Tsallis entropy and the Vlasov-Poisson equations Plastino, Ángel Ricardo Física Astronomía Poisson distribution Special case Tsallis entropy Physics Statistical physics Gravitation Three-dimensional space Tsallis statistics Space dimension Principle of maximum entropy Thermodynamics |
title_short |
Tsallis entropy and the Vlasov-Poisson equations |
title_full |
Tsallis entropy and the Vlasov-Poisson equations |
title_fullStr |
Tsallis entropy and the Vlasov-Poisson equations |
title_full_unstemmed |
Tsallis entropy and the Vlasov-Poisson equations |
title_sort |
Tsallis entropy and the Vlasov-Poisson equations |
dc.creator.none.fl_str_mv |
Plastino, Ángel Ricardo Plastino, Ángel Luis |
author |
Plastino, Ángel Ricardo |
author_facet |
Plastino, Ángel Ricardo Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Astronomía Poisson distribution Special case Tsallis entropy Physics Statistical physics Gravitation Three-dimensional space Tsallis statistics Space dimension Principle of maximum entropy Thermodynamics |
topic |
Física Astronomía Poisson distribution Special case Tsallis entropy Physics Statistical physics Gravitation Three-dimensional space Tsallis statistics Space dimension Principle of maximum entropy Thermodynamics |
dc.description.none.fl_txt_mv |
We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces. Facultad de Ciencias Astronómicas y Geofísicas Facultad de Ciencias Exactas |
description |
We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/122873 |
url |
http://sedici.unlp.edu.ar/handle/10915/122873 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0103-9733 info:eu-repo/semantics/altIdentifier/doi/10.1590/s0103-97331999000100008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf 79-90 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064268124880896 |
score |
13.22299 |