Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling
- Autores
- Orellana, Esteban; Zampieri, Guido; De Bernardini, Nicola; Guerrero, Leandro Demián; Erijman, Leonardo; Campanaro, Stefano; Treu, Laura
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The increasing urbanization has led to rising waste and energy demands, necessitating innovative solutions. A sustainable food waste management approach involves anaerobic codigestion with sewage sludge, enhancing biogas production while managing waste. Although this technology has been successfully tested, the biological mechanisms determining its efficiency are still poorly understood. This study leverages genome-scale metabolic modeling of 138 metagenome-assembled genomes to explore species interactions in lab-scale anaerobic reactors fed with sewage sludge to increasing proportions of food waste. The models showed positive correlations with experimental biogas production (CH4: r = 0.54, CO2: r = 0.66), validating their reliability. The dominant methanogen, Methanothrix sp., adapted its metabolism based on feedstock, affecting methane yields, which ranged from 2.5 to 3 mmol/g of volatile solids·h with sewage sludge to 10–14 mmol/g of VS·h with high food waste. The integration of extracellular enzymes into the models highlighted the role in methane production of pectin degradation, protein hydrolysis, and lipid metabolism, mediated by Proteiniphilum sp., Kiritimatiellae sp., and Olb16 sp. The study identified 475 mutualistic interactions involving amino acid, hydrogen, acetate, and phosphate exchange and 44 competitive interactions in hydrolytic and fermentative processes. These insights can help optimize anaerobic digestion and sustainable waste management in urban settings.
Fil: Orellana, Esteban. Universita Di Padova. Dipartimento Di Biología; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Zampieri, Guido. Universita Di Padova. Dipartimento Di Biología; Italia
Fil: De Bernardini, Nicola. Universita Di Padova. Dipartimento Di Biología; Italia
Fil: Guerrero, Leandro Demián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Erijman, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Campanaro, Stefano. Universita Di Padova. Dipartimento Di Biología; Italia
Fil: Treu, Laura. Universita Di Padova. Dipartimento Di Biología; Italia - Materia
-
metabolic modeling
metagenomics
anaerobic codigestion
flux balance analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275429
Ver los metadatos del registro completo
| id |
CONICETDig_c59f5b67ce802a3e2302096c3e5ab272 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275429 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic ModelingOrellana, EstebanZampieri, GuidoDe Bernardini, NicolaGuerrero, Leandro DemiánErijman, LeonardoCampanaro, StefanoTreu, Laurametabolic modelingmetagenomicsanaerobic codigestionflux balance analysishttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2The increasing urbanization has led to rising waste and energy demands, necessitating innovative solutions. A sustainable food waste management approach involves anaerobic codigestion with sewage sludge, enhancing biogas production while managing waste. Although this technology has been successfully tested, the biological mechanisms determining its efficiency are still poorly understood. This study leverages genome-scale metabolic modeling of 138 metagenome-assembled genomes to explore species interactions in lab-scale anaerobic reactors fed with sewage sludge to increasing proportions of food waste. The models showed positive correlations with experimental biogas production (CH4: r = 0.54, CO2: r = 0.66), validating their reliability. The dominant methanogen, Methanothrix sp., adapted its metabolism based on feedstock, affecting methane yields, which ranged from 2.5 to 3 mmol/g of volatile solids·h with sewage sludge to 10–14 mmol/g of VS·h with high food waste. The integration of extracellular enzymes into the models highlighted the role in methane production of pectin degradation, protein hydrolysis, and lipid metabolism, mediated by Proteiniphilum sp., Kiritimatiellae sp., and Olb16 sp. The study identified 475 mutualistic interactions involving amino acid, hydrogen, acetate, and phosphate exchange and 44 competitive interactions in hydrolytic and fermentative processes. These insights can help optimize anaerobic digestion and sustainable waste management in urban settings.Fil: Orellana, Esteban. Universita Di Padova. Dipartimento Di Biología; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Zampieri, Guido. Universita Di Padova. Dipartimento Di Biología; ItaliaFil: De Bernardini, Nicola. Universita Di Padova. Dipartimento Di Biología; ItaliaFil: Guerrero, Leandro Demián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Erijman, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Campanaro, Stefano. Universita Di Padova. Dipartimento Di Biología; ItaliaFil: Treu, Laura. Universita Di Padova. Dipartimento Di Biología; ItaliaAmerican Chemical Society2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275429Orellana, Esteban; Zampieri, Guido; De Bernardini, Nicola; Guerrero, Leandro Demián; Erijman, Leonardo; et al.; Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling; American Chemical Society; Environmental Science & Technology; 59; 13; 3-2025; 6659-66720013-936XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.est.4c11180info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.est.4c11180info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:51:27Zoai:ri.conicet.gov.ar:11336/275429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:51:28.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| title |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| spellingShingle |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling Orellana, Esteban metabolic modeling metagenomics anaerobic codigestion flux balance analysis |
| title_short |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| title_full |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| title_fullStr |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| title_full_unstemmed |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| title_sort |
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling |
| dc.creator.none.fl_str_mv |
Orellana, Esteban Zampieri, Guido De Bernardini, Nicola Guerrero, Leandro Demián Erijman, Leonardo Campanaro, Stefano Treu, Laura |
| author |
Orellana, Esteban |
| author_facet |
Orellana, Esteban Zampieri, Guido De Bernardini, Nicola Guerrero, Leandro Demián Erijman, Leonardo Campanaro, Stefano Treu, Laura |
| author_role |
author |
| author2 |
Zampieri, Guido De Bernardini, Nicola Guerrero, Leandro Demián Erijman, Leonardo Campanaro, Stefano Treu, Laura |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
metabolic modeling metagenomics anaerobic codigestion flux balance analysis |
| topic |
metabolic modeling metagenomics anaerobic codigestion flux balance analysis |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The increasing urbanization has led to rising waste and energy demands, necessitating innovative solutions. A sustainable food waste management approach involves anaerobic codigestion with sewage sludge, enhancing biogas production while managing waste. Although this technology has been successfully tested, the biological mechanisms determining its efficiency are still poorly understood. This study leverages genome-scale metabolic modeling of 138 metagenome-assembled genomes to explore species interactions in lab-scale anaerobic reactors fed with sewage sludge to increasing proportions of food waste. The models showed positive correlations with experimental biogas production (CH4: r = 0.54, CO2: r = 0.66), validating their reliability. The dominant methanogen, Methanothrix sp., adapted its metabolism based on feedstock, affecting methane yields, which ranged from 2.5 to 3 mmol/g of volatile solids·h with sewage sludge to 10–14 mmol/g of VS·h with high food waste. The integration of extracellular enzymes into the models highlighted the role in methane production of pectin degradation, protein hydrolysis, and lipid metabolism, mediated by Proteiniphilum sp., Kiritimatiellae sp., and Olb16 sp. The study identified 475 mutualistic interactions involving amino acid, hydrogen, acetate, and phosphate exchange and 44 competitive interactions in hydrolytic and fermentative processes. These insights can help optimize anaerobic digestion and sustainable waste management in urban settings. Fil: Orellana, Esteban. Universita Di Padova. Dipartimento Di Biología; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina Fil: Zampieri, Guido. Universita Di Padova. Dipartimento Di Biología; Italia Fil: De Bernardini, Nicola. Universita Di Padova. Dipartimento Di Biología; Italia Fil: Guerrero, Leandro Demián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina Fil: Erijman, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina Fil: Campanaro, Stefano. Universita Di Padova. Dipartimento Di Biología; Italia Fil: Treu, Laura. Universita Di Padova. Dipartimento Di Biología; Italia |
| description |
The increasing urbanization has led to rising waste and energy demands, necessitating innovative solutions. A sustainable food waste management approach involves anaerobic codigestion with sewage sludge, enhancing biogas production while managing waste. Although this technology has been successfully tested, the biological mechanisms determining its efficiency are still poorly understood. This study leverages genome-scale metabolic modeling of 138 metagenome-assembled genomes to explore species interactions in lab-scale anaerobic reactors fed with sewage sludge to increasing proportions of food waste. The models showed positive correlations with experimental biogas production (CH4: r = 0.54, CO2: r = 0.66), validating their reliability. The dominant methanogen, Methanothrix sp., adapted its metabolism based on feedstock, affecting methane yields, which ranged from 2.5 to 3 mmol/g of volatile solids·h with sewage sludge to 10–14 mmol/g of VS·h with high food waste. The integration of extracellular enzymes into the models highlighted the role in methane production of pectin degradation, protein hydrolysis, and lipid metabolism, mediated by Proteiniphilum sp., Kiritimatiellae sp., and Olb16 sp. The study identified 475 mutualistic interactions involving amino acid, hydrogen, acetate, and phosphate exchange and 44 competitive interactions in hydrolytic and fermentative processes. These insights can help optimize anaerobic digestion and sustainable waste management in urban settings. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275429 Orellana, Esteban; Zampieri, Guido; De Bernardini, Nicola; Guerrero, Leandro Demián; Erijman, Leonardo; et al.; Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling; American Chemical Society; Environmental Science & Technology; 59; 13; 3-2025; 6659-6672 0013-936X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275429 |
| identifier_str_mv |
Orellana, Esteban; Zampieri, Guido; De Bernardini, Nicola; Guerrero, Leandro Demián; Erijman, Leonardo; et al.; Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling; American Chemical Society; Environmental Science & Technology; 59; 13; 3-2025; 6659-6672 0013-936X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.est.4c11180 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.est.4c11180 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850504968567521280 |
| score |
13.275514 |