Ecological and climatic controls of modern wildfire activity patterns across southwestern South America

Autores
Holz, Andrés; Kitzberger, Thomas; Paritsis, Juan; Veblen, Thomas
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding how patterns of wildfire activity across biomes are shaped by heterogeneity in biomass resources to burn and atmospheric conditions conducive to burning is a high research priority in the context of global environmental change. Along a latitudinal gradient (25 to 56° S) from semi-arid scrublands through Mediterranean-type vegetation to wet forests in southwestern South America (SSA) we analyzed influences of mean climate and interannual climate variability on fire activity using documentary fire records from 1984 to 2008. We identified large regions with common temporal variability in annual area burned, related this variability to local interannual climate variability and in turn to modes of the major tropical and extratropical climate drivers of the southern hemisphere-El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO). Differences in fire activity response to interannual climate variability were related to the relative influences of available biomass to burn, and to weather effects on amounts of fine fuels and fuel moisture conditions. The pattern of average fire activity along this latitudinal moisture/productivity gradient corresponds well with the varying constraints model. This model predicts low fire activity towards the arid extreme due to reduced burnable biomass and again towards the humid extreme due to infrequent weather suitable for drying fuels, and predicts a broad zone of high fire activity at intermediate locations where resources to burn are abundant in all years and fuel moisture dries under reliably dry summer conditions. The dominant influence on interannual climate variability is AAO, which explained most of the variability in fire activity both by reducing seasonal precipitation in mesic and wet forests where fire is dependent on infrequent drought and by enhancing fine fuel production in Mediterranean-type vegetation where fuel amount and continuity constrain fire activity. In the context of the drying and warming trends in SSA related to the continued positive anomaly in AAO, our results underscore the importance of the varying constraints on fire activity and modulation of fire-climate relationships by different vegetation types, which is a much needed step toward developing fire projections under future climate.
Fil: Holz, Andrés. University of Colorado; Estados Unidos
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentina
Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University of Tasmania; Australia. University of Colorado; Estados Unidos
Fil: Veblen, Thomas. University of Colorado; Estados Unidos
Materia
ANNUAL AREA BURNED
ANTARCTIC OSCILLATION
EL NIÑO-SOUTHERN OSCILLATION
FIRE ECOLOGY
FIRE-CLIMATE RELATIONSHIPS
SOUTHERN ANNULAR MODE
WILDFIRE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/71320

id CONICETDig_c4b43c9bf0961daaecb1596a7fc9d930
oai_identifier_str oai:ri.conicet.gov.ar:11336/71320
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ecological and climatic controls of modern wildfire activity patterns across southwestern South AmericaHolz, AndrésKitzberger, ThomasParitsis, JuanVeblen, ThomasANNUAL AREA BURNEDANTARCTIC OSCILLATIONEL NIÑO-SOUTHERN OSCILLATIONFIRE ECOLOGYFIRE-CLIMATE RELATIONSHIPSSOUTHERN ANNULAR MODEWILDFIREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Understanding how patterns of wildfire activity across biomes are shaped by heterogeneity in biomass resources to burn and atmospheric conditions conducive to burning is a high research priority in the context of global environmental change. Along a latitudinal gradient (25 to 56° S) from semi-arid scrublands through Mediterranean-type vegetation to wet forests in southwestern South America (SSA) we analyzed influences of mean climate and interannual climate variability on fire activity using documentary fire records from 1984 to 2008. We identified large regions with common temporal variability in annual area burned, related this variability to local interannual climate variability and in turn to modes of the major tropical and extratropical climate drivers of the southern hemisphere-El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO). Differences in fire activity response to interannual climate variability were related to the relative influences of available biomass to burn, and to weather effects on amounts of fine fuels and fuel moisture conditions. The pattern of average fire activity along this latitudinal moisture/productivity gradient corresponds well with the varying constraints model. This model predicts low fire activity towards the arid extreme due to reduced burnable biomass and again towards the humid extreme due to infrequent weather suitable for drying fuels, and predicts a broad zone of high fire activity at intermediate locations where resources to burn are abundant in all years and fuel moisture dries under reliably dry summer conditions. The dominant influence on interannual climate variability is AAO, which explained most of the variability in fire activity both by reducing seasonal precipitation in mesic and wet forests where fire is dependent on infrequent drought and by enhancing fine fuel production in Mediterranean-type vegetation where fuel amount and continuity constrain fire activity. In the context of the drying and warming trends in SSA related to the continued positive anomaly in AAO, our results underscore the importance of the varying constraints on fire activity and modulation of fire-climate relationships by different vegetation types, which is a much needed step toward developing fire projections under future climate.Fil: Holz, Andrés. University of Colorado; Estados UnidosFil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University of Tasmania; Australia. University of Colorado; Estados UnidosFil: Veblen, Thomas. University of Colorado; Estados UnidosEcological Society of America2012-11-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71320Holz, Andrés; Kitzberger, Thomas; Paritsis, Juan; Veblen, Thomas; Ecological and climatic controls of modern wildfire activity patterns across southwestern South America; Ecological Society of America; Ecosphere; 3; 11; 16-11-2012; 1-252150-8925CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.esajournals.org/doi/pdf/10.1890/ES12-00234.1info:eu-repo/semantics/altIdentifier/doi/10.1890/ES12-00234.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:03Zoai:ri.conicet.gov.ar:11336/71320instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:03.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
title Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
spellingShingle Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
Holz, Andrés
ANNUAL AREA BURNED
ANTARCTIC OSCILLATION
EL NIÑO-SOUTHERN OSCILLATION
FIRE ECOLOGY
FIRE-CLIMATE RELATIONSHIPS
SOUTHERN ANNULAR MODE
WILDFIRE
title_short Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
title_full Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
title_fullStr Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
title_full_unstemmed Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
title_sort Ecological and climatic controls of modern wildfire activity patterns across southwestern South America
dc.creator.none.fl_str_mv Holz, Andrés
Kitzberger, Thomas
Paritsis, Juan
Veblen, Thomas
author Holz, Andrés
author_facet Holz, Andrés
Kitzberger, Thomas
Paritsis, Juan
Veblen, Thomas
author_role author
author2 Kitzberger, Thomas
Paritsis, Juan
Veblen, Thomas
author2_role author
author
author
dc.subject.none.fl_str_mv ANNUAL AREA BURNED
ANTARCTIC OSCILLATION
EL NIÑO-SOUTHERN OSCILLATION
FIRE ECOLOGY
FIRE-CLIMATE RELATIONSHIPS
SOUTHERN ANNULAR MODE
WILDFIRE
topic ANNUAL AREA BURNED
ANTARCTIC OSCILLATION
EL NIÑO-SOUTHERN OSCILLATION
FIRE ECOLOGY
FIRE-CLIMATE RELATIONSHIPS
SOUTHERN ANNULAR MODE
WILDFIRE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Understanding how patterns of wildfire activity across biomes are shaped by heterogeneity in biomass resources to burn and atmospheric conditions conducive to burning is a high research priority in the context of global environmental change. Along a latitudinal gradient (25 to 56° S) from semi-arid scrublands through Mediterranean-type vegetation to wet forests in southwestern South America (SSA) we analyzed influences of mean climate and interannual climate variability on fire activity using documentary fire records from 1984 to 2008. We identified large regions with common temporal variability in annual area burned, related this variability to local interannual climate variability and in turn to modes of the major tropical and extratropical climate drivers of the southern hemisphere-El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO). Differences in fire activity response to interannual climate variability were related to the relative influences of available biomass to burn, and to weather effects on amounts of fine fuels and fuel moisture conditions. The pattern of average fire activity along this latitudinal moisture/productivity gradient corresponds well with the varying constraints model. This model predicts low fire activity towards the arid extreme due to reduced burnable biomass and again towards the humid extreme due to infrequent weather suitable for drying fuels, and predicts a broad zone of high fire activity at intermediate locations where resources to burn are abundant in all years and fuel moisture dries under reliably dry summer conditions. The dominant influence on interannual climate variability is AAO, which explained most of the variability in fire activity both by reducing seasonal precipitation in mesic and wet forests where fire is dependent on infrequent drought and by enhancing fine fuel production in Mediterranean-type vegetation where fuel amount and continuity constrain fire activity. In the context of the drying and warming trends in SSA related to the continued positive anomaly in AAO, our results underscore the importance of the varying constraints on fire activity and modulation of fire-climate relationships by different vegetation types, which is a much needed step toward developing fire projections under future climate.
Fil: Holz, Andrés. University of Colorado; Estados Unidos
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentina
Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University of Tasmania; Australia. University of Colorado; Estados Unidos
Fil: Veblen, Thomas. University of Colorado; Estados Unidos
description Understanding how patterns of wildfire activity across biomes are shaped by heterogeneity in biomass resources to burn and atmospheric conditions conducive to burning is a high research priority in the context of global environmental change. Along a latitudinal gradient (25 to 56° S) from semi-arid scrublands through Mediterranean-type vegetation to wet forests in southwestern South America (SSA) we analyzed influences of mean climate and interannual climate variability on fire activity using documentary fire records from 1984 to 2008. We identified large regions with common temporal variability in annual area burned, related this variability to local interannual climate variability and in turn to modes of the major tropical and extratropical climate drivers of the southern hemisphere-El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO). Differences in fire activity response to interannual climate variability were related to the relative influences of available biomass to burn, and to weather effects on amounts of fine fuels and fuel moisture conditions. The pattern of average fire activity along this latitudinal moisture/productivity gradient corresponds well with the varying constraints model. This model predicts low fire activity towards the arid extreme due to reduced burnable biomass and again towards the humid extreme due to infrequent weather suitable for drying fuels, and predicts a broad zone of high fire activity at intermediate locations where resources to burn are abundant in all years and fuel moisture dries under reliably dry summer conditions. The dominant influence on interannual climate variability is AAO, which explained most of the variability in fire activity both by reducing seasonal precipitation in mesic and wet forests where fire is dependent on infrequent drought and by enhancing fine fuel production in Mediterranean-type vegetation where fuel amount and continuity constrain fire activity. In the context of the drying and warming trends in SSA related to the continued positive anomaly in AAO, our results underscore the importance of the varying constraints on fire activity and modulation of fire-climate relationships by different vegetation types, which is a much needed step toward developing fire projections under future climate.
publishDate 2012
dc.date.none.fl_str_mv 2012-11-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/71320
Holz, Andrés; Kitzberger, Thomas; Paritsis, Juan; Veblen, Thomas; Ecological and climatic controls of modern wildfire activity patterns across southwestern South America; Ecological Society of America; Ecosphere; 3; 11; 16-11-2012; 1-25
2150-8925
CONICET Digital
CONICET
url http://hdl.handle.net/11336/71320
identifier_str_mv Holz, Andrés; Kitzberger, Thomas; Paritsis, Juan; Veblen, Thomas; Ecological and climatic controls of modern wildfire activity patterns across southwestern South America; Ecological Society of America; Ecosphere; 3; 11; 16-11-2012; 1-25
2150-8925
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.esajournals.org/doi/pdf/10.1890/ES12-00234.1
info:eu-repo/semantics/altIdentifier/doi/10.1890/ES12-00234.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Ecological Society of America
publisher.none.fl_str_mv Ecological Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613466535493632
score 13.070432