Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America
- Autores
- Kitzberger, Thomas; Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Falk, Donald A.. University of Arizona; Estados Unidos
Fil: Westerling, Anthony L.. University of California; Estados Unidos
Fil: Swetnam, Thomas W.. University of Arizona; Estados Unidos - Materia
-
WILDFIRE
CLIAMTE CHANGE
ANNUAL AREA BURNED
SNOW DURATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64403
Ver los metadatos del registro completo
id |
CONICETDig_7fa7af726a1ca27ad2fedf7255e736b1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64403 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North AmericaKitzberger, ThomasFalk, Donald A.Westerling, Anthony L.Swetnam, Thomas W.WILDFIRECLIAMTE CHANGEANNUAL AREA BURNEDSNOW DURATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Falk, Donald A.. University of Arizona; Estados UnidosFil: Westerling, Anthony L.. University of California; Estados UnidosFil: Swetnam, Thomas W.. University of Arizona; Estados UnidosPublic Library of Science2017-12-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64403Kitzberger, Thomas; Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.; Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America; Public Library of Science; Plos One; 12; 12; 15-12-2017; 1-24; e01884861932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0188486info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188486info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:45Zoai:ri.conicet.gov.ar:11336/64403instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:45.333CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
title |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
spellingShingle |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America Kitzberger, Thomas WILDFIRE CLIAMTE CHANGE ANNUAL AREA BURNED SNOW DURATION |
title_short |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
title_full |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
title_fullStr |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
title_full_unstemmed |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
title_sort |
Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America |
dc.creator.none.fl_str_mv |
Kitzberger, Thomas Falk, Donald A. Westerling, Anthony L. Swetnam, Thomas W. |
author |
Kitzberger, Thomas |
author_facet |
Kitzberger, Thomas Falk, Donald A. Westerling, Anthony L. Swetnam, Thomas W. |
author_role |
author |
author2 |
Falk, Donald A. Westerling, Anthony L. Swetnam, Thomas W. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
WILDFIRE CLIAMTE CHANGE ANNUAL AREA BURNED SNOW DURATION |
topic |
WILDFIRE CLIAMTE CHANGE ANNUAL AREA BURNED SNOW DURATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Falk, Donald A.. University of Arizona; Estados Unidos Fil: Westerling, Anthony L.. University of California; Estados Unidos Fil: Swetnam, Thomas W.. University of Arizona; Estados Unidos |
description |
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64403 Kitzberger, Thomas; Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.; Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America; Public Library of Science; Plos One; 12; 12; 15-12-2017; 1-24; e0188486 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64403 |
identifier_str_mv |
Kitzberger, Thomas; Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.; Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America; Public Library of Science; Plos One; 12; 12; 15-12-2017; 1-24; e0188486 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0188486 info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188486 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613940894498816 |
score |
13.070432 |