Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras

Autores
Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.
Fil: Argerami, Martin. University of Regina; Estados Unidos
Fil: Farenick, Douglas. University of Regina; Estados Unidos
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
injective envelope
local multiplier algebra
continuous trace C^* algebras
Hilbert bundles
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95304

id CONICETDig_1305504120475b0b331a16a82e5691f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/95304
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebrasArgerami, MartinFarenick, DouglasMassey, Pedro Gustavoinjective envelopelocal multiplier algebracontinuous trace C^* algebrasHilbert bundleshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.Fil: Argerami, Martin. University of Regina; Estados UnidosFil: Farenick, Douglas. University of Regina; Estados UnidosFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95304Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo; Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras; Oxford University Press; Quarterly Journal Of Mathematics; 63; 1; 3-2012; 1-200033-5606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/63/1/1/1561445info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/haq037info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.5726info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:03Zoai:ri.conicet.gov.ar:11336/95304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:04.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
title Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
spellingShingle Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
Argerami, Martin
injective envelope
local multiplier algebra
continuous trace C^* algebras
Hilbert bundles
title_short Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
title_full Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
title_fullStr Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
title_full_unstemmed Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
title_sort Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
dc.creator.none.fl_str_mv Argerami, Martin
Farenick, Douglas
Massey, Pedro Gustavo
author Argerami, Martin
author_facet Argerami, Martin
Farenick, Douglas
Massey, Pedro Gustavo
author_role author
author2 Farenick, Douglas
Massey, Pedro Gustavo
author2_role author
author
dc.subject.none.fl_str_mv injective envelope
local multiplier algebra
continuous trace C^* algebras
Hilbert bundles
topic injective envelope
local multiplier algebra
continuous trace C^* algebras
Hilbert bundles
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.
Fil: Argerami, Martin. University of Regina; Estados Unidos
Fil: Farenick, Douglas. University of Regina; Estados Unidos
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95304
Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo; Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras; Oxford University Press; Quarterly Journal Of Mathematics; 63; 1; 3-2012; 1-20
0033-5606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95304
identifier_str_mv Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo; Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras; Oxford University Press; Quarterly Journal Of Mathematics; 63; 1; 3-2012; 1-20
0033-5606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/63/1/1/1561445
info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/haq037
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.5726
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269781215936512
score 13.13397