Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras
- Autores
- Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.
Fil: Argerami, Martin. University of Regina; Estados Unidos
Fil: Farenick, Douglas. University of Regina; Estados Unidos
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
injective envelope
local multiplier algebra
continuous trace C^* algebras
Hilbert bundles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95304
Ver los metadatos del registro completo
id |
CONICETDig_1305504120475b0b331a16a82e5691f3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebrasArgerami, MartinFarenick, DouglasMassey, Pedro Gustavoinjective envelopelocal multiplier algebracontinuous trace C^* algebrasHilbert bundleshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.Fil: Argerami, Martin. University of Regina; Estados UnidosFil: Farenick, Douglas. University of Regina; Estados UnidosFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95304Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo; Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras; Oxford University Press; Quarterly Journal Of Mathematics; 63; 1; 3-2012; 1-200033-5606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/63/1/1/1561445info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/haq037info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.5726info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:03Zoai:ri.conicet.gov.ar:11336/95304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:04.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
title |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
spellingShingle |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras Argerami, Martin injective envelope local multiplier algebra continuous trace C^* algebras Hilbert bundles |
title_short |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
title_full |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
title_fullStr |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
title_full_unstemmed |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
title_sort |
Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras |
dc.creator.none.fl_str_mv |
Argerami, Martin Farenick, Douglas Massey, Pedro Gustavo |
author |
Argerami, Martin |
author_facet |
Argerami, Martin Farenick, Douglas Massey, Pedro Gustavo |
author_role |
author |
author2 |
Farenick, Douglas Massey, Pedro Gustavo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
injective envelope local multiplier algebra continuous trace C^* algebras Hilbert bundles |
topic |
injective envelope local multiplier algebra continuous trace C^* algebras Hilbert bundles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A. Fil: Argerami, Martin. University of Regina; Estados Unidos Fil: Farenick, Douglas. University of Regina; Estados Unidos Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky-Hilbert module over the abelian AW*-algebra C(Δ). We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95304 Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo; Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras; Oxford University Press; Quarterly Journal Of Mathematics; 63; 1; 3-2012; 1-20 0033-5606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95304 |
identifier_str_mv |
Argerami, Martin; Farenick, Douglas; Massey, Pedro Gustavo; Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras; Oxford University Press; Quarterly Journal Of Mathematics; 63; 1; 3-2012; 1-20 0033-5606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/63/1/1/1561445 info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/haq037 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.5726 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269781215936512 |
score |
13.13397 |